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Abstract

Analysis of surface-based shallow seismic data can be problematic with traditional meth-
ods, such as seismic reflection processing, refraction tomography and surface wave analy-
sis. These methods require identification and isolation of single phases, namely reflected
body waves, first break direct/refracted arrivals and dispersed surface wave trains. In
shallow seismic data these phases are not well separated, but arrive at the receivers in
overlapping time windows. Full waveform inversion methods do not require the indi-
vidual phases to be separated and are thus expected to be a powerful tool for shallow
investigations. Ideally, one would devise a waveform inversion algorithm that considers
3D visco-elastic subsurface models and an arbitrary surface topography. Currently, such
a comprehensive approach is computationally too expensive, and the prevalent strategy
is to employ a 2D acoustic approximation.

The acoustic approximation is expected to be problematic for shallow seismic data,
because such data contain significant portions of surface wave energy that is not con-
sidered with this type of numerical modelling. Furthermore, it cannot account for the
shear waves and mode conversions, which are prevalent in the seismograms. I quantify
the inadequacy of the acoustic approximation with an extensive waveform and wave-
form sensitivity analysis in both the time domain and the frequency domain, which also
highlights the substantial differences between scalar (pressure sources and receivers) and
vectorial (directed sources and multi-component receivers) seismic data.

An information content analysis that is based on the eigenvalue spectrum of the
approximate Hessian matrix revealed that the combination of vertically oriented sources
and horizontally oriented receivers is most favourable. It outperforms the commonly em-
ployed combination of vertically directed sources and vertical component receivers. The
information content analysis also highlights that there would be little benefit in acquir-
ing full tensorial data, including all possible source/receiver component configurations.
If complete seismograms are analysed, there is no difference in information content be-
tween time and frequency domain waveform inversions. However, restricting the data
space to selected time windows results in a significant loss of information. In contrast,
selecting only a few carefully chosen frequencies causes only minor degradations of the
information content.

Because of the inadequacy of the acoustic approximation I have implemented a
frequency-domain elastic modelling code that is based on the finite element technique.
My implementation considers a 2D grid of regular square elements and perfectly matched
layer boundary conditions. The resulting matrix equation is evaluated with a state-of-
the-art direct matrix solver. Comparisons with analytic 2D solutions indicate that the
accuracy depends on the source receiver directivity combination. For example, the ac-
curacy for horizontal and collinear sources and receivers (both at the surface) is about
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four times better compared with configurations, where source and receiver directions
are perpendicular to each other. Tests with different widths of the perfectly matched
boundary layers showed that in most cases a width of 10 grid points is sufficient and
that a width of 30 grid points covers all troublesome cases.

A comparison of my frequency-domain finite element modelling results with those
from a well established finite difference time domain programme showed a very good
match. These comparisons also offered an excellent opportunity to investigate the
general efficiency of frequency and time-domain modelling. If the response for sev-
eral source positions is required, which is a typical scenario during waveform inversions,
the frequency-domain approach outperforms the time-domain code approach in terms of
computing time. This advantage comes at the expense of a substantially higher memory
consumption of the frequency-domain algorithm.

2D waveform modelling does not properly account for the 3D spreading of a point
source. This can be partially corrected with 3D to 2D transformation or filtering meth-
ods, but these amplitude and phase corrections are not expected to work satisfactorily
for shallow seismic data. To strike a balance between the impractical full 3D elastic
approach and the problematic 2D approximation, I have implemented a 2.5D modelling
algorithm. Here, a Fourier transformation of the 3D differential equations is performed
with respect to the coordinate perpendicular to the model plane (y -direction). The re-
sulting 2D differential equations include the resulting wavenumber ky as a parameter.
Choosing an appropriate suite of ky wavenumbers, with which the inverse transformation
to the space domain can be carried out accurately, is a non-trivial problem because the
spectra show abrupt disruptions (even pole-like behaviour) at certain critical wavenum-
bers. For homogeneous and mildly heterogeneous models I propose an uneven sampling
strategy based on Gauss-Legendre integration points in which the critical wavenumbers
are avoided or skipped. For strongly heterogeneous models this approach is not applica-
ble and an even sampling strategy must be employed because the critical wavenumbers
are not known in advance, at least for the surface waves and Stoneley waves. Unfortu-
nately, such an even sampling strategy proved to be numerically unstable, because some
ky wavenumbers may fall on or lie too close to the singularities in the ky spectrum. The
solution to this problem will require more research, perhaps by considering a complex
frequency approach or using complex elastic moduli that introduce slight attenuation in
the model, thus moving the singularities off the real wavenumber axis along which the
inverse transform is applied.
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Zusammenfassung

Die Auswertung an der Oberfläche aufgezeichneter flachseismischer Daten mittels her-
kömmlicher seismischer Methoden wie Reflektionsseismik, Refraktionstomographie und
Verfahren zur Oberflächenwellenanalyse ist mit Problemen behaftet. Diese Methoden set-
zen die Identifizierung bestimmter Anteile des Wellenfeldes voraus, nämlich der Einsätze
der reflektierten Raumwellen, der Einsätze der direkten und refraktierten Raumwellen be-
ziehungsweise der Wellenzüge der dispergierten Oberflächenwellen. In flachseismischen
Datensätzen treten diese Wellenfeldanteile nicht getrennt auf, sondern werden in sich
überlappenden Zeitfenstern aufgezeichnet. Die Methode der Inversion vollständiger Wel-
lenfelder kommt ohne die Identifizierung der einzelnen Anteile des Wellenfeldes aus und
ist daher voraussichtlich optimal zur Analyse flachseismischer Daten. Der Idealfall wäre
eine Wellenfeldinversion unter Annahme viskoelastischer seismischer Parameter dreidi-
mensionaler heterogener Erdmodelle mit beliebiger Topographie. Ein solcher Ansatz ist
gegenwärtig mit zu hohem numerischen Aufwand verbunden. Am weitesten verbreitet
sind daher zur Zeit Ansätze, die auf einer akustischen Näherung und zweimensionalen
Modellen basieren.

Es ist abzusehen, daß die akustische Näherung im Fall flachseismischer Datensätze
problematisch ist, da diese wesentliche Anteile von Oberflächenwellenenergie enthalten,
welche mit einem akustischen Ansatz nicht modelliert werden können. Außerdem läßt
die akustische Näherung die Scherwellenanteile und Modenkonversionen außer acht, die
häufig in den Seismogrammen zu beobachten sind. Ich quantifiziere das Ausmaß der
Unzulänglichkeit der akustischen Näherung mit Hilfe einer umfangreichen Analyse von
Wellenfeldern und Wellenfeldsensitivitäten, sowohl im Zeit- als auch im Frequenzbe-
reich, die auch die grundlegenden Unterschiede zwischen skalaren (Beschränkung auf
Druckwellen) und vektoriellen (Einsatz gerichteter Quellen und Aufzeichnung sämtlicher
Wellenfeldkomponenten) seismischen Daten vor Augen führt.

Die Untersuchung des Informationsgehalts flachseismischer Datensätze mittels der Ei-
genwertspektren der Hessischen Matrizen offenbart, daß die Kombination vertikal gerich-
teter Einzelkraftquellen mit der Aufzeichung der Horizontalkomponente des Wellenfeldes
den größten Vorteil bietet. Diese Wahl übertrifft die herkömmlich eingesetzte Kombi-
nation vertikaler Einzelkraftquellen mit der Aufzeichnung der Vertikalkomponente des
Wellenfeldes in Bezug auf den Informationsgehalt. Die Studie des Informationsgehaltes
zeigt auch, daß die Aufzeichnung des gesamten tensoriellen Wellenfeldes für sämtliche
Kombinationen von Quell- und Empfängerrichtung wenig weiteren Informationsgewinn
bringen würde. Für die Analyse vollständiger Seismogramme besteht kein Unterschied
im Informationsgehalt von Wellenforminversionen im Zeit- oder Frequenzbereich. Soll
der Datenraum der Inversion jedoch auf einzelne Zeitfenster beschränkt werden führt
dies zu einem beträchtlichen Informationsverlust. Demgegenüber ist die Auswahl einiger
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mit Bedacht ausgesuchter Frequenzen mit einem relativ geringen Verlust an Information
verbunden.

Aufgrund der Unzulänglichkeit der akustischen Näherung habe ich ein Programm zur
Modellierung elastischer Wellenausbreitung geschrieben, welches auf der Methode der
finiten Elemente beruht. Das Programm basiert auf einem regulären Gitter rechteckiger
Elemente und der Anwendung der Methode der

”
Perfectly Matched Layers“ (PMLs).

Das sich aus diesem Ansatz ergebende Gleichungssystem wird unter Verwendung einer
dem neuesten Stand der Technik entspechenden Programmbibliothek gelöst. Vergleiche
mit analytischen Lösungen in 2D weisen darauf hin, daß die Genauigkeit der Simulati-
on von der Wahl der Kombination von Quell- und Empfängerrichtung abhängt. So ist
beispielsweise die Berechnung der Horizontalkomponente in Quellrichtung für horizontal
gerichtete Quellen (Quell- und Empfängerposition an der Oberfläche) etwa viermal ge-
nauer als die für Konfigurationen, bei denen Quelle und Empfänger senkrecht zueinander
ausgerichtet sind. Versuche mit unterschiedlicher Breite der PMLs ergaben, daß in den
meisten Fällen eine Breite von 10 Elementen ausreicht und eine Breite von 30 Elementen
auch problematischere Fälle abdeckt.

Ein Vergleich meiner 2D Modellierungsergebnisse im Zeitbereich mit denen eines
gängigen Finite-Differenzen Programms demonstrierte eine sehr gute Übereinstimmung.
Diese Vergleichsrechnungen boten außerdem eine hervorragende Gelegenheit, die Effi-
zienz von Modellierungen im Frequenz- und Zeitbereich zu ermitteln. Wenn Daten für
mehrere Quellpositionen berechnet werden sollen, was im Zuge einer Wellenfeldinversion
der Normalfall ist, ist die benötigte Rechenzeit für die Modellierung im Frequenzbereich
geringer. Dieser Vorteil wird durch einen wesentlich größeren Speicherplatzbedarf des
Frequenzbereichsalgorithmus erkauft.

Die Modellierung von Wellenfeldern in 2D trägt der dreidimensionalen (3D) Wellen-
ausbreitung, ausgehend von einer Punktquelle, nicht ausreichend Rechnung. Mit Hilfe
von Filtermethoden zur Transformation eines 2D in ein 3D Wellenfeld kann dies Nähe-
rungsweise korrigiert werden, im Fall von flachseismischen Datensätzen ist jedoch ein
befriedigendes Ergebnis dieser Amplituden- und Phasenkorrekturen nicht zu erwarten.
Als Mittelweg zwischen einer bisher nicht realisierbaren dreidimensionalen elastische Mo-
dellierung und dem problematischen zweidimensionalen Ansatz habe ich mich für einen
Algorithmus in 2.5D entschieden. Dabei werden die elastischen Bewegungsgleichungen
in 3D nach der Raumkoordinate senkrecht zur Modellierungsebene Fouriertransformiert,
also in y -Richtung. Die sich ergebenden 2D Gleichungen enthalten die zugehörige Wellen-
zahl ky als Parameter. Die geeignete Wahl einer Reihe von Werten für die Wellenzahl ky ,
die eine fehlerfreie Rücktransformation in den Ortsbereich ermöglicht, ist keine einfache
Aufgabe, da die Wellenzahlspektren für bestimmte kritische Wellenzahlen Unstetigkeits-
stellen oder sogar Pole aufweisen. Für homogene oder nur leicht heterogene Erdmodelle
schlage ich eine nicht gleichmäßige Auswahl von Wellenzahlen unter Auslassung der kri-
tischen Wellenzahlen vor, die auf den Stützstellen der Gauß-Legendre-Quadratur beruht.
Bei stark heterogenen Erdmodellen kann diese Auswahlmethode nicht angewandt wer-
den, da die Lage der kritischen Wellenzahlen, zumindest für die Oberflächenwellen und
Stoneleywellen, in diesem Fall nicht bekannt ist. Stattdessen muß auf eine äquidistante
Wahl der Wellenzahlen zurückgegriffen werden. Unglücklicherweise ist der Algorithmus
für äquidistante Stützstellen numerisch nicht mehr stabil, da einige Wellenzahlen auf
oder zu nahe bei den Singularitäten des Wellenzahlspektrums zu liegen kommen können.
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Die Lösung dieses Problems ist Gegenstand weiterführender Untersuchungen. Denkbar
währen die Anwendung der Methode der komplexen Frequenzen oder die Einführung
komplexer elastischer Parameter die zu einer leichten Dämpfung der Wellen führen würde,
damit die Singularitäten der Wellenfeldspektren nicht mehr auf der Achse der reellen Wel-
lenzahlen zu liegen kommen, entlang derer die Rücktransformation in den Ortsbereich
ausgeführt wird.
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Chapter 1

Introduction

1.1 Seismic methods: main areas of application

Seismic methods find wide application in many areas of earth and engineering science.
The resolution and fidelity with which structure can be inferred from these methods
exceeds that of most alternative geophysical techniques. In the present context ‘struc-
ture’ refers to the vertical and lateral distribution of elastic properties in the subsurface,
although it is understood that seismic properties generally reflect geologic properties.
Seismic methods can be employed on a variety of length/depth scales from the sub-
metre range to thousands of kilometres. Some fields of application and the associated
range of target sizes are given in Figure 1.1.

At the upper end of the scale, seismic waves are used for investigating the structure
of the earth as a whole (e.g. Kennett and Bunge, 2008) and have yielded fundamental
information on the constitution of the deep interior, such as the existence of a liquid outer
core and a solid inner core of the earth. Also, the crustal and upper mantle structure of
the earth can be effectively explored by means of seismic methods (e.g. Shearer, 2009).
This has enabled seismologists to deduce models on local, regional and global scales that
allow a better location of earthquakes and seismic risk assessment.

In the field of hydrocarbon exploration and development, the seismic technique is
the main tool used to image the subsurface, delineate reservoirs and characterise their
properties. (e.g. Claerbout, 1985; Sheriff and Geldart, 1985). The technique also finds
important application in coal seam mapping (e.g. Buchanan and Jackson, 1986), mineral
exploration (e.g. Eaton et al., 2003), natural hazard assessment (e.g. Butler, 2005;
Knödel et al., 2007), hydro-geophysical delineation of aquifer geometry (e.g. Rubin and
Hubbard, 2006; Kirsch, 2008), civil engineering site investigations for dams, tunnels and
bridges (e.g. Stokoe, 2007) and materials testing (e.g. Appendix A of Rose, 2004). At
the very low end of the distance scale, seismic/ultrasonic techniques provide a useful
non-invasive means of finding cracks and other defects in structures like bridge decks
and buildings.
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Figure 1.1: Length scales of targets in seismic exploration.

1.2 Seismic methods:
model parameters and data types

1.2.1 Subsurface parameters

The subsurface model parameters that can be imaged by seismic methods are mostly
linked to the propagation velocities of elastic waves. In the most general case, these
propagation velocities are directionally dependent. Such an anisotropic elastic medium
can be uniquely described by at most 21 elastic moduli at each spatial point, but for
almost all practical applications a higher degree of symmetry is assumed. For transversely
anisotropic media, for example, the number of independent elastic moduli reduces to five
(see Thomsen, 1986). If the subsurface is isotropic, then the seismic velocities do not
change with propagation direction and only three independent parameters have to be
considered.

There are several possibilities to choose a set of elastic parameters. Either the wave
velocities themselves, that is the compressional (or longitudinal) wave velocity vP and the
shear wave velocity vS , together with the density ρ can be used, or the Lamé parameters
λ and µ in combination with the density can be chosen. Alternatively, one may choose
the shear modulus µ, the compressibility modulus κ and the density for describing the
subsurface. The relations between these different parameter sets are given in Appendix
E. Further possible parameter sets can be found, for example, in Smidt (2009).
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Intrinsic attenuation (or seismic Q) is a further material property that may have to
be taken into account. This can be achieved by replacing the real parameters, discussed
above, by complex quantities. The resulting visco-elastic media properties (anisotropic
or isotropic) are frequency dependent (Forbriger and Friederich, 2005).

To simplify the algorithms, an acoustic approximation can be employed. Here, the
medium is treated like a fluid and only the compressional wave velocity vP and the density
ρ are used as parameters; the shear wave propagation velocity is assumed to be zero.

1.2.2 Observables

Geophones are routinely used to record land-seismic data on the earth’s surface. They
measure the ground particle velocity at the points where they are attached. For earth-
quake monitoring and structural testing sometimes accelerometers are used. They record
ground acceleration instead of ground velocity. Compared with geophones, accelerom-
eters typically record a broader range of frequencies, but their amplitude sensitivity is
smaller. Therefore, they are most suitable for monitoring strong ground motions. Both
geophones and accelerometers measure ground motion (velocity or acceleration, respec-
tively) in a specific direction. When three linearly independent directions are recorded at
an observation point, the 3D particle motion can be reconstructed.

In marine and borehole applications hydrophones are often employed to capture the
pressure wave field. In contrast to the vectorial measurements with geophones and
accelerometers, they record a scalar property. This can create difficulties in identifying
shear waves.

Like the forward solver introduced later in my thesis, numerical modelling programmes
often compute displacement fields. They can be easily converted to ground velocities
and accelerations by computing single or double time derivatives in the time domain
or by multiplications with i2πf (or −4π2f 2) in the frequency domain, where f is the
temporal frequency and i is the imaginary number.

1.3 Seismic methods: technology and information con-
tent

Seismic methods:
technology and information content

1.3.1 Seismic reflection

Seismic reflection surveying is the main geophysical imaging tool used in oil and gas
exploration, but it is also employed in investigations of the structure of the Earth’s crust
as well as in mineral exploration (e.g. Yilmaz, 2000).

This method is based on the information contained in the reflected phases, visible in
the seismograms. It offers good structural information about impedance contrasts in the
subsurface, that is the locations of reflection horizons, but only very limited information
on the elastic parameters of the individual units. Reflection seismology is routinely applied
to elucidate structure in one, two and three dimensions. 3D high resolution seismics offers
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the best results, but it entails an areal distribution of sources and sensors. Near-surface
seismic imaging can be problematic since here the important reflected phases are often
concealed by other phases, such as ground roll or guided waves (see section 1.4).

1.3.2 Seismic refraction

The seismic refraction method is a useful tool to map structures on a broad variety
of scales, from tens of kilometres in the case of crustal studies (e.g. Guterch et al.,
2003), to tens of metres in the case of environmental, groundwater and civil engineering
investigations (e.g. Lanz et al., 1998), right down to the centimetre scale in the case of
materials testing (e.g. Abraham and Dérobert, 2003).

Here, mostly the first arrival travel time data are extracted from the seismogram;
the remaining information is neglected. The method offers limited information on the
elastic parameters of the subsurface, mainly on the P-wave velocity vP . If arrivals of the
direct or refracted S-waves are visible in the data, also information about the shear wave
velocity can be retrieved. This method is routinely applied for 1D and 2D problems and
in a few cases also 3D investigations have been performed (e.g. Heincke et al., 2006).

The refraction method requires that the wave speed increases with depth in order
to generate the critically refracted arrivals (head waves). Low velocity layers do not
generate head waves and so they cannot be directly detected and imaged. Normally,
only a few marker horizons can be delineated. Compared with the seismic reflection
method, refraction analyses provide more information on gross velocity structure, but
reflection technology outperforms refraction methods for imaging discontinuities, both
in number and detail. Furthermore, the depth penetration of the refraction method is
limited by the largest source/receiver offsets. This is illustrated in Figure 1.2, where
results from a combined reflection/refraction experiment are shown.

1.3.3 Surface wave analysis

The surface wave method is used for global and regional scale problems to image the
structure of the crust and mantle down to depths of about 1000 km. It is also applied
to engineering scale problems for determining subsurface layering to depths of tens of
metres (e.g. Socco and Strobbia, 2004). The method mainly exploits the dispersion
characteristics of surface waves (Rayleigh and Love type), but full particle motion records
are also sometimes used. Dispersion curves are extracted from the surface wave portion
of the seismograms.

Surface waves are predominantly sensitive to variations of the shear wave velocities
and, to a limited extent, to density variations. In contrast to the seismic reflection
method, there is no requirement for abrupt changes of the seismic properties in the
subsurface. Furthermore, low velocity zones can be resolved unlike with the refraction
seismic method. The theory, on which the method is based, assumes a layered subsurface
or continuous variation of velocity with depth and it is therefore inherently a 1D method.
Pronounced 2D or 3D effects can thus severely distort the results. Pseudo 2D and
3D approaches are possible by inverting for 1D structures at different locations and
correlating them among each other (Socco et al., 2009).
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1.3.4 Transmission travel time tomography

Seismic travel time tomography has been used for generating models of the velocity
distribution in the earth’s crust, mantle and core (see review in Romanowicz, 2003).
The ray-based method has been improved by adding finite frequency information along
wave paths (Marquering et al., 1999). On a smaller scale, it is also used in exploration
geophysics (e.g. Lehmann, 2007, and references therein) and materials testing (e.g. Liu
and Guo, 2005), often involving cross-well recording configurations.

The method is based on kinematic information and the data include the picked travel
times of the direct body waves. Most studies only yield the distribution of the P-wave
velocity vP in a 2D approach, but also some information about the S-wave velocity can
be extracted and extensions to 3D applications are possible. The smallest structures
that can be resolved are of the size of the first Fresnel zone along the wave paths under
consideration (Williamson and Worthington, 1993).

1.3.5 Passive methods

In recent years, passive seismic methods (also called seismic interferometry), which ex-
ploit ambient ‘noise’ sources, have been developed as a new means of probing the subsur-
face. The method is based on the reciprocity principle and involves the cross correlation of
noise measurements observed at multiple stations for determining the Green’s functions
(or impulse responses) of the subsurface. A review of the method and its applications
is given in Wapenaar et al. (2008). Limited information about the distribution of vS

can be retrieved and only gross structures can be resolved. Figure 1.3 shows example
results for array measurements of ambient noise in valley structures in the Wallis area in
Switzerland.

1.3.6 Full waveform inversion

Seismic full waveform inversion is a powerful technique that attempts to extract the
‘complete’ information of the recorded seismogram, both kinematic (travel times or
phase) and dynamic (amplitudes or magnitude spectra). This makes it possible (at
least theoretically) to resolve sub-wavelength features. An example of the improvements
of acoustic waveform inversion compared with travel time transmission tomography is
shown in Figure 1.4.

The migration method of seismic reflection processing (e.g. Claerbout, 1985) is re-
lated to full waveform inversions, but it stops short of an actual inversion. It is only
capable of recovering the short wavelength variations in the velocity field, such as reflec-
tor positions and shape. Full waveform inversion seeks to recover, in addition, the long
wavelength variations in the wave-speed distributions. In this way it retrieves informa-
tion about the various seismic parameters throughout the subsurface. Due to the high
computational costs and the significant non-linearity of the problem, most applications
to date have been restricted to 1D and 2D models. Since developments related with
full waveform inversions are a primary objective of my thesis, I will further discuss the
current state-of-the-art of this method in section 1.5.
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Figure 1.3: Inversion results obtained from array measurements of ambient noise in the
Sion region. Right: measured dispersion curves with standard deviations (grey) and
dispersion curves for the best-fitting velocity model (black). Left: Shear-wave velocities
obtained from inversion. Error bars are showing the velocity range contained in models
with acceptable misfit. Taken from Roten (2007).
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Figure 1.4: Comparison of travel time tomography and waveform inversion results for
a scale model experiment simulating a borehole configuration using 51 evenly spaced
sources in the left and and 51 equally spaced receivers in the right borehole. (a) shows
the true velocity model, (b) the travel time tomography result and (c) the waveform
inversion result. Taken from Pratt (1999).
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1.4 Specific problems of surface-based near-surface
seismics

Shallow targets within the near-surface depth range (uppermost 50 to 100 metres) impose
several difficulties for most seismic methods. The problem is illustrated in Figure 1.5,
which shows observed and synthetic data related with a near-surface experiment. The
individual methods, discussed in section 1.3, require the individual phases to be well
separated. With the exception of the first breaks, employed for refraction seismics,
the individual phases (reflections and surface waves) lie almost on top of each other
(see the left and middle panels in Figure 1.5). The situation may be exacerbated by
high amplitude guided waves, which may occur from reverberations associated with the
weathering layer or the groundwater table (e.g. Roth and Holliger, 1999).

The synthetic data, shown in the right panel of Figure 1.5, were computed with an
acoustic finite difference code and should mimic the observed shot gathers in Figure 1.5.
The model parameters were estimated from crosshole seismic surveys (Liberty et al.,
1999). Since the acoustically modelled data do not include surface waves and no shear
waves and guided phases contaminate the shot gather, subtle reflection hyperbolas are
visible. However, it is obvious that it will be virtually impossible to recover such low-
amplitude reflections in the observed data, no matter what type of reflection processing
is applied.

Figure 1.5: Data example from the Boise test site (Liberty et al., 1999) showing an unfil-
tered surface seismic shot (left), the same shot bandpass filtered (200-800 Hz) (middle)
and an acoustic finite difference modelling result for velocities derived from cross-well,
VSP and surface seismic surveys. Station spacing is 0.2 m, sample rate is 0.25 ms. 10 Hz
geophones and a sledge hammer were used. Note the water table reflection at 17 ms and
multiple at 34 ms (on the synthetic record). Also note the relatively low amplitude from
the clay reflection that appears on the synthetic record and may also appear at offset in
the filtered shot record.
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The interference of the individual phases at near shot-receiver offsets would also affect
a surface wave analysis, because the reflected phases may contaminate the dispersion
curves. Consequently, only the refraction method is expected to provide reliable results.
However, the information content provided by this method can be limited (see section
1.3.2).

Considering all these problems, it seems obvious that a full waveform inversion would
be particularly useful for near-surface applications. Instead of separating first breaks,
reflected phases and surface waves (i.e. throwing away information), full waveform
inversions seek a subsurface structure that explains the entire wave field or at least
significant parts thereof. A comparison of the synthetic shot gather and the actual data
in Figure 1.5 also indicates that an acoustic approximation is likely to be inadequate.

1.5 State-of-the-art
of seismic full waveform inversions

Seismic full waveform inversion is a subject currently attracting wide interest amongst
the geophysical community, as evidenced by two recently published special issues on
this topic in leading international journals viz. the November 2006 issue of Geophysical
Prospecting and a supplement to the December 2009 issue of Geophysics (Plessix, 2008;
Buske et al., 2009). The review paper by Virieux and Operto (2009) provides a concise
overview of the progress made since the pioneering efforts of researchers like Albert
Tarantola and Peter Mora, back in the mid 1980s (Tarantola, 1984; Mora, 1987), and
the current state of the art in seismic full waveform inversion.

The first full waveform inversion algorithms were one-parameter inversions in the
sense that only the P-wave velocity was inverted for using an acoustic approximation
(Tarantola, 1984). Such types of inversions are still the most popular option. Interest-
ingly, elastic inversions were already proposed in the 80’s (Mora, 1987), but only recently
have several researchers focused on this much more challenging problem (Gélis et al.,
2007; Brossier et al., 2009)

The early waveform inversion attempts were performed in the time domain. Later, it
was recognised that frequency domain inversions offer several benefits (Pratt, 1999; Zhou
and Greenhalgh, 2003; Plessix, 2009; Brossier et al., 2009). The advantages are primarily
in the computational efficiency. Today, both time- and frequency domain inversions are
practised. They have undergone further development and there is quite some debate as
to which of the two approaches is most advantageous (Virieux et al., 2009).

The two main ingredients of any full waveform inversion algorithm include a forward
solver (numerical modelling) that predicts seismic data using a given subsurface model,
and an inverse operator that estimates subsurface parameters using observed data. In
the following, I will briefly outline the current state-of-the-art of numerical modelling and
inversion of seismic data.

1.5.1 Numerical modelling

The simplest form of seismic modelling considers a homogeneous full space, for which
analytic solutions exist (see Appendix C). In the presence of a free surface, there exist
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semi-analytic solutions (Lamb, 1904; Johnson, 1974; Wang, 1999). For horizontally
stratified media there also exist semi-analytical solutions that properly account for the
3D radiation characteristics of seismic waves (Takeuchi and Saito, 1972; Müller, 1985;
Wang, 1999).

In forward solvers for laterally varying media several popular modelling approaches
are employed, namely finite differences, pseudospectral methods, finite elements and
spectral elements (Virieux, 1986; Danecek and Seriani, 2008; Marfurt, 1984; Min et al.,
2003; Komatitsch and Tromp, 1999). Other options that are less often employed include
boundary elements (e.g. Banerjee et al., 1986), integral equations (Kennett, 1985) and
others (see Virieux and Operto, 2009, for examples). All of these methods have inherent
advantages and disadvantages and are (at least conceptually) applicable in both the time
and the frequency domain.

Finite difference techniques are easy to implement and computationally quite efficient.
They are predominantly employed for time-domain modelling (Virieux, 1986; Robertsson
et al., 1994; Bohlen, 2002), but there also finite difference frequency-domain codes
suggested in the literature (e.g. Pratt, 1990; Operto et al., 2007). There exist 2D and
3D finite difference algorithms, some of which also consider anisotropy and anelastic
effects (e.g. Robertsson et al., 1994; Igel et al., 1995). The main disadvantages of
the finite difference method include the requirement of even spatial sampling and some
difficulties in implementing a free surface, although this has been done successfully (e.g.
Robertsson et al., 1996), albeit not for arbitrary topography.

Pseudospectral methods can be considered as a variant of finite differences, where
the spatial derivatives are evaluated with Fourier transformation methods (Fornberg,
1998). Compared with finite differences, they require a less dense spatial sampling of
the subsurface, which makes pseudospectral codes computationally more efficient.

Finite elements offer a more flexible and also a more physical approximation to wave
propagation phenomena (e.g. Brenner and Scott, 2008; Zienkiewicz et al., 2005) Un-
structured grids can be employed and it is very simple to include an arbitrary free surface
topography. Compared with finite differences, implementation of finite element algo-
rithms is generally more complicated. Time-domain finite element codes were presented
by Zhang and Verschuur (2002) and frequency-domain algorithms were proposed, for
example, by Min et al. (2003).

Spectral element methods have recently received a lot of attention in the seismological
community (Komatitsch and Tromp, 2002a,b). They can be considered as a finite
element variant, combined with the spectral method, where the elements can be larger
and high order interpolants are used to represent the wave field such that numerical
integration within the elements is carried out in a more sophisticated manner. This is
expected to improve the accuracy of the results.

All of the methods discussed above have been implemented in two and three dimen-
sions, but only the 2D versions are currently computationally tractable in the framework
of full waveform inversions, where the forward problem needs to be solved many times.
3D acoustic inversions have started to emerge (e.g. Ben-Hadj-Ali et al., 2008), but 3D
elastic inversions still exceed the capabilities of modern HPC computer clusters. Since
many seismic data sets are collected along single profiles, 2D inversions seem to be a
possible option. However, 2D modelling codes consider line sources that are infinitely
extended perpendicular to the modelling domain, which does not mimic properly the 3D
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radiation characteristics of actual seismic (point) sources. Therefore, so-called 2.5D-
modelling attempts have been made, where a 3D source radiation and a 2D modelling
domain are considered (e.g. Bleistein, 1986; Liner, 1991, 1995; Williamson and Pratt,
1995). Most of these attempts include very crude approximations. In particular, the elas-
tic 2.5D frequency domain modelling problem has not yet been properly addressed. There
are issues associated with wavenumber sampling and critical points in the wavenumber
spectra (e.g. Zhou and Greenhalgh, 2006).

1.5.2 Inversion

Seismic waveform inversion is a highly non-linear problem that has to be solved either
with iterative linearised methods or truly non-linear algorithms, such as global optimisers
(Sen and Stoffa, 1995; Tarantola, 2005). Employing global optimisers such as genetic
algorithms or simulated annealing (e.g. Sen and Stoffa, 1995) can aid in avoiding that
the inversion gets ‘trapped’ in a local minimum of the objective function (instead of
finding the true solution at the global minimum). Unfortunately, these global optimisers
require a very large number of forward modelling computations to be carried out. This
is currently prohibitive for realistic waveform inversion problems.

Most algorithms described in the literature consider a non-linear conjugate gradient
approach, also referred as the back-propagated residual method. This is computationally
quite efficient, but the convergence of the iterative procedure is somewhat slow. There-
fore, Gauss-Newton or full Newton methods are occasionally considered. They have
better convergence behaviour, but require more computer memory. More details on the
different options are described in Pratt et al. (1998).

Conjugate gradients and Gauss-Newton or full Newton methods are so called directed
search methods. They may find the solution in the model space quite efficiently, but
there is a considerable likelihood that the iterative inversion procedure gets ‘trapped’ in a
local minimum. Such local minima are a consequence of the non-linearity of the seismic
waveform inversion problem.

Key elements of directed search methods are the so-called sensitivities or Fréchet
derivatives. These are the partial derivatives of the individual data points with respect
to the unknown subsurface model parameters. They are computed explicitly for Gauss-
Newton and full Newton methods and considered implicitly in the conjugate gradient
algorithms. Sensitivities are not only an integral part of directed search inversion al-
gorithms, but they also provide very useful diagnostics for experimental design (Curtis,
2004). They are fully determined by the source/receiver geometry and the subsurface
model, and do not depend on the actual observed data. Therefore, they can be employed
prior to a seismic survey for identifying suitable experimental setups.

1.6 Thesis Objectives and Structure

In the preceding text I have outlined that (i) seismic full waveform inversions are a very
powerful tool for imaging the subsurface, (ii) such an approach is particularly relevant
and important for exploring the shallow subsurface and (iii) that remarkable progress has
been made during the past years, but there exist still a number critical problems that
need to be overcome. In this thesis I seek to answer two important questions, namely
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· What is the information content of seismic waveform data and which portions of the
seismic wave fields include the most significant subsurface information and

· how can appropriate elastic waveform data be modelled in an efficient manner?

In Chapter 2 I will address the first question by an extensive sensitivity analysis,
in both the time domain and the frequency domain. In particular, I will examine and
discuss the information content offered by the different source/receiver directionality
configurations for a renge of models.

An important conclusion of Chapter 2 is that the acoustic approximation is unsuitable
for analysing surface-based shallow seismic data. Therefore, an efficient elastic forward
solver needs to be determined. Based on arguments given in the section 1.5, I have chosen
to implement an elastic frequency-domain finite element algorithm. In the first part of
Chapter 3, I give an extensive description of the basic equations and some implementation
details, such as the perfectly matched layer (PML) boundary conditions. The second part
of Chapter 3 is devoted to a variety of tests, in which capabilities and limitations of my
algorithm are evaluated. This part concludes with a comparison with a well established
time domain finite difference code, which provides interesting insights with regard to
general differences in efficiency between time-domain and frequency-domain modelling.

In Chapter 4, I will tackle the challenging 2.5D issue for elastic waves. I present
wavenumber sampling strategies that are amenable for homogeneous and mildly hetero-
geneous full and half spaces. Then, I discuss a series of tests, where I investigate the
influence of spatial sampling with the finite element mesh and the wavenumber sampling
required to address the 2.5D problem.

The main results of my thesis are summarised and critically reviewed in Chapter 5.
Furthermore, I will give a brief overview of research topics related to my thesis that are,
in my view, particularly important and deserving of further investigation.
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Chapter 2

2D sensitivity and information
content analyses of seismic data

2.1 Introduction

Seismic waveform data include a wealth of information about the subsurface, far more
than is contained in just the first arrival times or peak pulse amplitudes. This informa-
tion can be exploited with appropriate inversion schemes. Such techniques were proposed
more than 20 years ago (e.g. Tarantola, 1984; Mora, 1987), but only with the availability
of powerful computer clusters in recent times have waveform inversions become feasible
for realistic data sets. Remarkable progress has been made in the algorithmic develop-
ments (e.g. Plessix, 2008), but it has not yet been systematically studied which parts of
the seismic waveforms are particularly useful and which combinations of source direction
and receiver components should be used. In this chapter, I will make a first attempt
to shed light on this issue, by systematically investigating waveform characteristics and
associated measures that are involved in waveform inversion schemes.

Seismic waveform inversions typically involve very large data sets and many unknown
model parameters. This makes the use of global inversion schemes such as genetic
algorithms (e.g. Sen and Stoffa, 1995) impractical. Consequently, local minimisation
search inversion algorithms need to be considered (e.g. Menke, 1989). There exist several
options to formulate iterative schemes for such linearised inversion problems. Greenhalgh
et al. (2006) give a good overview of these different algorithms and their interrelations.

In all of these algorithms, there is the need to define the partial derivative of the
data with respect to the model parameters. If the forward algorithm is represented by
the generally non-linear relation d = d (m), where d ∈ D is any data set contained in
the selected data space and m ∈ M is a particular model within the model space, then
the set of Fréchet derivatives J can be defined such that

d (m + δm) = d (m) + Jδm +O (δm2
)

(2.1)

is an acceptable approximation for small perturbations δm to the model m. J is also
called the Jacobian matrix or sensitivity matrix and it is important to note that it depends
on the location in the model space, m, around which the expansion (2.1) is performed.
Equation (2.1) acknowledges the non-linear relationship between the data and the model



2.1 Introduction 15

and merely implies that changes in the data caused by a perturbation δm are, in the
close vicinity of m, proportional to the sensitivities contained in J.

A Gauss-Newton type inversion scheme without any data weighting and no additional
constraints on the model parameters can be written as

mk+1 =
[
JkT

Jk
]−1

JkT [
d0 − d

(
mk
)

+ Jkmk
]

, (2.2)

where k is the iteration index, Jk = ∂d
∂m

∣∣
mk is the sensitivity computed for the current

model mk and the vector d0 contains the observed data. Usually, the so-called approxi-
mate Hessian matrix JT J (see Pratt et al., 1998, for the reason for this term) is singular
or close to singular and thus not invertible, such that (2.2) cannot be used. To overcome
this problem, regularisation in the form of constraints has to be added. The simplest

option is a damped inversion (Levenberg, 1944; Marquardt, 1963), where
[
JkT

Jk
]−1

is replaced by
[
JkT

Jk + λI
]−1

. Here, λ is called the damping parameter and I is the

identity (unit) matrix. More general constraints (for example a combination of damping

and smoothing) can be applied via a model weighting operator ŴM , replacing JkT
Jk by[

JkT
Jk + λŴM

]−1

.

A further modification of equation (2.2) is necessary if one wants to weight the
individual data points in accordance with their reliability or importance. For example,
one might want to enhance the influence of the body wave arrivals with respect to
the surface wave portion of the data. Otherwise the latter would have a much higher
influence on the solution due to their larger relative amplitudes. For that purpose a data

weighting operator ŴD is introduced and JkT
Jk is replaced by

[
JkT

ŴDJk + λŴM

]−1

in equation (2.2). This leads to the update equation

mk+1 =
[
JkT

ŴDJk + λŴM

]−1

JkT
ŴD

[
d0 − d

(
mk
)

+ Jkmk
]

,

(2.3)

which is derived and discussed in more detail in Appendix D and repeated there as
equation (D.5b).

Equation (2.3) indicates that the quantities influencing the inversion process are the
data residuals, (d0 − d (m)), the sensitivities contained in J, the data weighting matrix
ŴD , and the regularisation constraints supplied by the parameters ŴM and λ.

In this chapter, I will focus on the data-related constraints in equation 2.3. Initially,
I will investigate the model response d (m) for a number of possible scenarios (i) in the
light of the acoustic and elastic approximations of the wave equation, and/or (ii) in the
absence and presence of a traction-free surface, (iii) as a function of different source and
receiver type and directionality and (iv) in the presence of model inhomogeneities. The
increasing complexity of the wave fields when moving from (i) to (iv) will be illustrated
in both the time domain and the frequency domain.

As the next step, I will show the ramifications of factors (i) to (iv) on the waveform
sensitivities contained in the Jacobian matrix J. Finally, the data information content
offered by different experimental setups will be investigated by means of an eigenvalue
analysis of the approximate Hessian matrix JT J.
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All simulations are only performed in 2D for reasons of simplicity and computational
tractability. Nevertheless, it allows me to study some of the most important effects. At
some future point it would be highly desirable to extend the investigation into 2.5D or
even full 3D models.

2.1.1 Experimental setup

Subsurface models

In this chapter I consider four very simple two-dimensional models. Table 2.1 introduces
abbreviated names, elastic parameters and other important quantities used for these
models. My goal is to approximate realistic scenarios, as observed in many near-surface
investigations (e.g. Knödel et al., 2007).

FH is a homogeneous full space model with elastic parameters typical for clay material.

HH is a homogeneous half space model, which has the same elastic parameters as FH.

HG is a model exhibiting a slight vertical gradient in all the elastic parameters. It may
represent a layer of sand compressed under its own weight.

HL is a model comprising a layer of the same elastic parameters as FH and HH,
overlying a high-velocity half space (e.g. resembling limestone).

homogeneous gradient layer over
models model half space

←−−−−−−−−−−−−−free surface−−−−−−−−−−−−−→
FH HH HG HL

min (vS)[m/s] 1000 1000 600 1000
max (vP)[m/s] 2000 2000 2500 3000

fc [Hz] 500 500 500 500
dh[m] 0.1 0.1 0.05 0.1
N 10 10 12 10
dt[µs] 25 25 10 10

nx × nz 600×480 600×250 1200×520 600×300
dx × dz [m] 60×48 60×25 60×26 60×30

acoustic modelling using FEM
only elastic FDTd modelling

elastic modelling using FDTd

Table 2.1: Model parameters of the four models considered in this study, where vP and
vS are the seismic velocities, fc is the approximate centre frequency of the source wavelet,
N = min(vS )

fmax·dh
is the number of grid points per minimum wavelength. The quantity dh is

the grid step for forward calculations, dt is the time step used, nx and nz denote the
numbers of grid points in the horizontal and vertical directions and dx and dz are the
vertical and horizontal model size (including the absorbing boundaries).
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The model parameters, seismic velocities vS and vP as well as density ρ, are only a
function of depth; their values are depicted in Figure 2.1 for the models having a free
surface.

Forward modelling

Time-domain finite difference modelling For most of the modelling described in
this chapter, a 2D elastic version of the code presented by Bohlen (2002) is used. This is
a finite difference time domain (FDTd) algorithm using a second-order centred difference
scheme in time and a fourth-order centred difference scheme (on a standard staggered
grid) in the spatial domain. The layout of the 2D standard staggered grid employed can
be found in Bohlen and Saenger (2006, Figure 1a).

To avoid numeric (grid) dispersion in the presence of a free surface, the grid spac-
ing dh must be chosen such that an appropriate number of grid points per minimum
wavelength, N = min(vS )

fmax·dh
, is guaranteed. Here, the quantity vS represents the shear wave

velocity and fmax is the highest frequency for which significant signal energy is present.
Bohlen and Saenger (2006) suggest appropriate values for N . For fc = 500 Hz and a
receiver at a distance of 60 m from the source, or 40 times the Rayleigh wavelength away
from the source, they get reasonable accuracy by using a value of N = 9 in combination
with an explicit boundary condition at the free surface (image method). For a rotated
staggered grid, Levander (1988) claims N = 5 to be sufficient.

The largest source-to-receiver distance that I model is 8 m; this is at most seven times
the dominant Rayleigh wavelength. Hence no significant numeric dispersion is expected
when using values of N ≥ 10, as given in Table 2.1.

An appropriate choice of the time stepping interval dt is even more critical for the
type of study I present here than the choice of the spatial sampling dh. The 2D version
of the dimensionality-dependent stability criterion suggested by Bohlen (2002) is

dt ≤ 6

7

dh√
2 ·max (vP)

. (2.4)
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Figure 2.1: Model parameters used for HH, HG and HL. The parameters for FH assume
the same constant values as those for HH. The grey area denotes the depth range not
considered in the sensitivity computations.
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As can be seen in Table 2.1, even smaller time steps dt are chosen, because numerical
stability is very important for the brute force perturbation approach used for computing
sensitivities (see section 2.1.2).

At the left, right and bottom edges of the models, absorbing zones of width 20 m
are applied (see Figure 2.3); for the model FH, representing an unbounded domain (full
space), an additional absorbing zone is placed at the top edge. The widths of the
absorbing boundary zones used are ten to twenty times larger than suggested by Cerjan
et al. (1985), where the absorbing frame used in this code is described. Tests showed
that such very thick boundary layers are necessary to suppress to a sufficient level the
spurious reflections from the computational boundaries.

Finite element modelling in the frequency domain To judge the validity of the
acoustic approximation for modelling elastic wave propagation, an acoustic finite element
(FEM) code (modified after Zhou and Greenhalgh, 1998a,c) was employed. It operates
in the frequency domain. The governing Helmholtz equation is solved on a structured
grid with linear elements of quadratic shape (a similar FEM code to solve the elastic
wave equation will be described in more detail in Chapters 3 and 4).

Element size and model parameters were chosen to be identical to the ones given
in Table 2.1 for the FDTd simulations. However, the width of the absorbing boundary
zones could be reduced to ten metres, because a perfectly matched layer (PML) approach
(Heikkola et al., 2003) rather then simple absorbing zones was used in this case to
suppress boundary reflections.

To analyse differences between acoustic and elastic simulations, frequency responses
across the entire bandwidth of the source wavelet need to be computed. To compare the
displacements generated by the acoustic code with the particle velocities produced by
the elastic FDTd code, a multiplication of the acoustic results in the frequency domain
by iω = i2πf is necessary. This is the frequency-domain equivalent of differentiation.
After a further multiplication with the source spectrum, an inverse Fourier transform
is applied, which allows a direct comparison of the acoustic and elastic wave fields in
the time domain. Vice versa, a Fourier transform of the FDTd results allows a direct
comparison in the frequency domain, again after multiplying the FEM solution by both
iω and the source spectrum.

Source characteristics and recording geometry

Source wavelet The stability criterion introduced in equation (2.4) dictates the need
for a very fine grid in the case that the source wavelet includes significant energy at high
frequencies. Therefore, a source wavelet with a rather narrow frequency bandwidth is
employed to keep the number of grid points needed to a reasonable limit.

One possible wavelet with a frequency spectrum decaying rapidly for higher frequen-
cies is

s(τ) =
(
1− 4τ 2

)
e−2τ2

with τ =
2fcπ

3

(
t − 3

2fc

)
, (2.5)

where fc is the approximate centre frequency. Using a rule of thumb, the maximal
frequency is fmax ≈ 2fc . The function s(t) in (2.5) is similar to the Ricker wavelet
(Hosken, 1988) and is implemented as a standard source time function in the FDTd
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forward solver that is used. The signal is shifted in time to ensure s(t) ≡ 0 for t ≤ 0. A
plot of (2.5) and the corresponding amplitude spectrum are shown in Figure 2.2.

Source types and wave field components An overview of the source types and
recorded wave field components considered in this study is given in Table 2.2, along with
the abbreviations that are used in the rest of this chapter and the symbols representing
the source and receiver locations in the wave-field and waveform-sensitivity snapshot
plots that will be shown in sections 2.2 and 2.3.

The combination of an omni-directional explosive source and recording of the scalar
pressure field — called ep after Table 2.2 — allows a comparison of the elastic wave
fields and the elastic sensitivities with respect to vP to their corresponding acoustic
equivalents.

Employing an explosion type or a vertically-directed single force source and using
vertical component geophones — ez respective zz — is what is mostly used in actual

0 0.005 0.01 0.015 0.02 0 500 1000 1500

envelope
real part

imaginary part

t[s] f[Hz]

source wavelet source spectrum

Figure 2.2: The left panel shows the source wavelet, given in equation (2.5), with
an approximate centre frequency of fc = 500 Hz that was used for all time-domain
simulations, while the right panel depicts the envelope, real and imaginary parts of its
spectrum; all frequency-domain simulation results are multiplied by this spectrum.

source types recorded field components

e explosive source p pressure field

x
single force
in x-direction

x
x-component of
particle velocity field

z
single force
in z-direction

z
z-component of
particle velocity field

Table 2.2: Overview of source types and recorded wave field components considered as
well as abbreviations and plotting symbols used for them throughout the chapter. In
figures showing source/receiver geometry (e.g. Figure 2.3), sources are shown as red
stars and receivers as blue triangles.
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surface land seismic field surveying.
The remaining combinations of source type and recorded components involve the

traditional sources (explosives and vertically directed) — ex and zx —, and a shear wave
source (horizontally directed) — xz and xx ; the combinations with receivers recording
the horizontal wave field component are simulated to get the 2D (bi-axial) equivalent
of using multi-component (tri-axial) geophones. Typically, in actual field surveys a y -
directed source would be employed and the y -component of the wave field recorded (SH
case). Due to the 2D approach I instead consider an x-directed source.

Experimental setup The placement of the sources and receivers for the different
models is shown in Figure 2.3.

Model FH is only used for comparing elastic and acoustic wave propagation and the
corresponding sensitivities. Therefore, only data for one receiver placed at a distance of
8 m from the source are computed.

To be able to perform a meaningful data information content analysis for the mod-
els incorporating a free surface, namely HH, HG and HL, several shot positions and
source/receiver distances are required. I employ one source, located in the middle of an
array of 16 receivers, placed at evenly spaced horizontal distances of one to eight metres
from the source. Since the model parameters only vary with depth, this enables me to
simulate a data set involving nine different source positions with eight receivers each
(see section 2.4.1).
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Figure 2.3: Sketch of the source and receiver positions used for (a) model FH and (b)
the half-space models HH, HG and HL. The absorbing boundaries are shaded in grey.
Note that they are displayed at a smaller scale.
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Data space and model space

The sensitivity matrix J introduced in equation (2.1) is a linear operator mapping a model
spaceM to a data space D. So far, they have been considered as general normed linear
spaces, but for the numerical analyses, they need to be properly defined. The following
definitions are somewhat technical and lengthy but the notation that is introduced here
will be used throughout the rest of this chapter.

Model space The model vectors m ∈M are column vectors containing the parameter
values of the model, discretised for inversion. The area of interest is divided into 1800
inversion cells of 20 cm edge length numbered in row major order. The location of these
18 m × 4 m sub-volumes in the forward grid can be seen in Figure 2.3, outlined by the
black frames, and a sketch of the inversion cells is provided in Figure 2.4. No anelastic
damping is introduced and the density is kept fixed.

In the acoustic case, I define

m = mP

=
[
mP

1 , mP
2 , ... , mP

nc

]T
,

(2.6)

where mP is the parameter vector containing only the P-wave velocities and mP
ic

= vP (xic )
is the P-wave velocity at point xic = (xic , zic ), the midpoint of the inversion cell with
index ic , running from one to the total number of inversion cells, nc = 1800.

In the elastic case, also shear wave velocities are taken into account and I define

m =

[
mP

mS

]
=

[[
mP

1 , mP
2 , ... , mP

nc

]T[
mS

1 , mS
2 , ... , mS

nc

]T
]

,

(2.7)

where mS , the parameter vector containing only the S-wave velocities, was added and
mS

ic
= vS (xic ) is the S-wave velocity, again taken at the midpoint of each inversion cell

ic .
In more general form, the model vector m can be written as

m = [m1, m2, ... , mnM
]T , (2.8)

1 2

nc − 1 nc

4
m

18 m

nz
c

nx
c

ic

Figure 2.4: Sketch of the model parameter indexing scheme in row major order.
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where nM = np · nc is the total number of model parameters and np is the number of
parameter sets, that is np = 1 in the acoustic and np = 2 in the elastic case.

Data space The data vectors d ∈ D are divided into sub-vectors containing all time
samples (or frequency samples) of the wave field for one specific source/receiver pair
l , one source type i ∈ {e, x , z} and one recorded component j ∈ {p, x , z} (See Table
2.2 for an overview of the shorthand notation for sources and receivers). The index
l ∈ [1, nrs ] specifies source location xs

l and receiver location xr
l of source/receiver pair l ;

nrs is the total number of pairs. Like this, one sub-vector reads

dl ,(ij) =
[
d l ,(ij) (t1) , ... , d l ,(ij) (tis ) , ... , d l ,(ij) (tns )

]T
in the time domain

and

dl ,(ij) =
[
d l ,(ij) (f1) , ... , d l ,(ij) (fis ) , ... , d l ,(ij) (fns )

]T
in the frequency domain,

where tis and fis are the times and frequencies of the data samples, respectively, and ns

is the total number of samples in the partial data set for pair l and configuration (ij).
To simplify the notation, one can write

dl ,(ij) =: dL

=
[
dL

1 , ... , dL
is , ... , dL

ns

]T (2.9)

abstractly for both domains and introduce super index L = l , (ij) combining the indices
for source/receiver pair l and configuration (ij). Then, the complete data vector is of
the form

d =


d1

...
dL

...
dnd

 =



[
d1

1 , ... , d1
is

, ... , d1
ns

]T
...[

dL
1 , ... , dL

is
, ... , dL

ns

]T
...[

dnd
1 , ... , dnd

is
, ... , dnd

ns

]T

 , (2.10)

which contains in total nd =
∑nrs

l=1 nl sub-vectors, if nl is the number of different
combinations of source type and field component recorded for pair l .

This means that the model space is of dimension nM = 1800 in the acoustic case
and nM = 3600 in the elastic case, the data space is of dimension nD = nd · ns and the
operator J, defined in (2.1), is a matrix of size nD × nM .

Norms To be able to establish an objective function (or cost function) to be minimised
for an inversion, it is necessary to measure the distance d0− d (m) between an observed
data set and a synthetic data set computed from model m. In other words, a norm in
the data space D has to be defined. To retain all flexibility of choosing subsets of data
sets and samples, the definition

‖d‖D := dT WT
DWD︸ ︷︷ ︸
ŴD

d (2.11)
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is used. WD and ŴD are nD × nD sized matrices for data weighting and selection; I will
only use them for data selection. That is, the diagonal elements of WD are either 1 or
0.

Similarly, if the inversion is to be regularised by constraining the solution to a preferred
model with certain properties, it is necessary to define a norm in model space M,

‖m‖M := mT WT
MWM︸ ︷︷ ︸
ŴM

m, (2.12)

by choosing WM ∈ RnM×nM such that ‖m‖M is the smaller, the more that m exhibits
the desired properties. Since this study is principally aimed at the à priori question of
optimal experimental design independent of any particular model, I use ŴM ≡ I.

Based upon these choices of norms, the update equation 2.3 can be derived — see
appendix D.

2.1.2 Sensitivity computation

Brute force approach

As introduced in equation (2.1), the sensitivities are partial derivatives of the data with
respect to the model parameters around a given model mk ,

Jk =
∂d

∂m

∣∣∣∣
mk

. (2.13)

A simple option to approximate these partial derivatives numerically is to write them as
a differential quotient. Using index notation, one obtains

Jk
ij =

∂di

∂mj

∣∣∣∣
mk

= lim
h→0

di

(
mk + hm̂j

)− di

(
mk
)

h
,

(2.14)

where m̂j is a unit vector in model space, i.e. (m̂j)i = δij .
Approximating this by a difference quotient leads to

Jk
ij ≈

di

(
mk + hm̂j

)− di

(
mk
)

h
(2.15)

for small h. Reformulating this to

Jk
ij ≈

di

(
(1 + hm̂j) mk

)− di

(
mk
)

h|mk
j |

, (2.16)

allows any forward solver to be used for computing sensitivities. For this, we need one
forward calculation providing the seismograms dL

(
mk
)

for the unperturbed background
model and nM additional forward calculations to compute the perturbation seismograms
dL
(
(1 + hm̂j) mk

)
for each of the sub-vectors introduced in equation (2.9); the super

index L denotes the source/receiver pair l and the source/receiver type ij with i ∈
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Figure 2.5: Structure of Jk and extraction of the model cross sections for P- and S-
wave sensitivities for the time/frequency sample is . (a) depicts the complete Jacobian,
(b) how it decomposes into the parts for the different parameters and data sets, (c) how
these parts themselves are made up of rows, each containing the sensitivities for one
particular time or frequency sample is and (d) how these rows form the cross sections
for this sample.
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{e, x , z} and j ∈ {p, x , z} (see Table 2.2 for the abbreviations). For the elastic case this
results in 3601 forward calculations for each source type. In Figure 2.5 a schematic of
the model for a forward run to get the perturbation seismograms for cell ic , marked in
black, is shown.

Using the general notation introduced before, (nM + 1) · nd forward simulations have
to be performed for computing the full Jacobian matrix

J =


J1

...
JL

...
Jnd

 =


PJ1

...
PJL

...
PJnd


︸ ︷︷ ︸

acoustic

=


PJ1 SJ1

...
...

PJL SJL

...
...

PJnd SJnd

 ,

︸ ︷︷ ︸
elastic

(2.17)

omitting the iteration index k from now on to simplify the notation.
The sensitivities can be visualised by plotting the values corresponding to the indi-

vidual cells at their location in the grid shown in Figure 2.4. This results in one cross
section showing the sensitivities with respect to either vP or vS for each time sample,
or, after a FFT, for the real and imaginary parts of the frequency-domain representation
at each frequency. The location of the data displayed in these cross sections inside the
complete J is shown in Figure 2.5.

To identify a suitable value for the size of the perturbation h, defined in equation
(2.16), test calculations using values of 0.1%, 0.5%, 1%, 5% and 10%, both positive and
negative, were performed. They did not show any strong dependence of the resulting
sensitivities on h, neither in the amount of variation, nor in the direction of variation. A
value of 1% was therefore finally selected for all computations.

Sensitivity calculation in the acoustic case

For computing acoustic sensitivities, I use the explicit expressions given by Zhou and
Greenhalgh (1999). Compared with the brute force approach required for the elastic
sensitivities, this is not only much faster, but also results in a significantly higher accuracy.
Formulation of explicit expressions for the elastic case is currently under development.
Unfortunately they were not available for my thesis project.

For an unbounded homogeneous medium (represented by model FH), an explosive
source and pressure field recording, the explicit acoustic expressions can be compared to
the results of the brute force perturbation approach. The similarity of the results serves
as a verification of the validity of the brute force approximation.

2.1.3 Data information

The update equation (2.3) indicates that the stability of the inversion is strongly de-
pendent on the degree of regularity of the matrix JT ŴDJ + λŴM . The second part of
this matrix, λŴM , represents the additional à priori constraints on the model vector m

and is independent of the experimental setup. To maximise the contribution of the data
and optimise their information content for the model parameters of choice, one has to
concentrate on the first part of the matrix, which is the approximate Hessian JT ŴDJ.
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This matrix is usually singular or nearly singular and therefore ill-conditioned. Since
the regularity of the problem is not related to the absolute size of the eigenvalues, but
to the condition number of the matrix, which is the ratio of its largest to its smallest
eigenvalue (see, e.g. Trefethen and Bau, 1997), the normalised eigenvalue spectrum of
JT ŴDJ will now be considered. If Λ̃ :={λ̃1, ... , λ̃i , ... , λ̃nM

} is the set of eigenvalues of
JT ŴDJ, sorted in descending order, the normalised eigenvalue spectrum is Λ :={... ,λi =
λ̃i/λ̃1, ... } with λ1 ≡ 1.

When computing the eigenvalue spectrum, finite numerical precision leads to nonzero
results for eigenvalues which should in theory be zero. This requires the introduction of a
threshold value θ, below which normalised eigenvalues are insignificant and thus belong
to the null space of the Hessian matrix (see Figure 2.6). The choice of the value of θ is
governed by the amount of damping necessary to render JT ŴDJ +λŴM regular, which
is in turn determined by the amount of noise present in the data, or, in my case, by the
numerical precision available.

To compare the data information for model vectors of different length nM , I look
at the fractional size of the effective null space `null, which is determined by choosing
θ, counting the number of normalised eigenvalues smaller than θ (|{λi ∈ Λ|λi < θ}|)
and then normalising this number by the total number of eigenvalues |Λ| = nM , i.e.

`null = |{λi∈Λ|λi<θ}|
nM

. Then,

1− `null =
|{λi ∈ Λ|λi ≥ θ}|

nM
(2.18)

is the measure of choice for the information content of the data set used for computing
JT ŴDJ. The quantity (2.18) will be subsequently referred to as the Relative E igenvalue
Range (RER), first introduced by Maurer et al. (2009). It varies between 0 (no infor-
mation) and 1 (all parameters resolved). A qualitative sketch of a typical eigenvalue
spectrum, a chosen threshold θ and the resulting RER and `null are shown in Figure 2.6.

The RER value does not require any actually observed data, but depends only on
the geometry of the measurement setup, that is, on the location and type/orientation

RER

`null

0 1
10-12

100

θ

lo
g
λ

i

i/nM

Figure 2.6: Descriptive sketch of a normalised eigenvalue spectrum of an approximate
Hessian matrix with threshold θ and quantities RER and `null as introduced in the text.
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of sources and receivers, and to a much lesser extent on the subsurface parameters.
Therefore, the RER is a useful tool for experimental design.

2.2 Wave field analysis

A primary goal of this chapter is to quantify the information content of seismic data as a
function of the various parameters introduced in the previous section. The determination
of information content, here expressed with the RER value introduced in equation (2.18),
is based on waveform sensitivities, which are themselves based on the actual Green’s
functions. Therefore, I first investigate waveform characteristics for a variety of scenarios.

Results from the different simulations are shown in Figures 2.8 to 2.13, which have a
common layout. From top to bottom they show wave field snapshots taken at five differ-
ent times or frequencies, labelled A, B, C, D and E (see Table 2.3). Source and receiver
locations and types are indicated using the symbols introduced in Table 2.2. For Figures
2.8, 2.9, 2.10 and 2.11, the seismograms and their frequency-domain representations
corresponding to the depicted snapshots are shown at the bottom of the two panels,
the seismograms corresponding to Figure 2.12 are shown in Figure 2.13, the frequency
domain represantations corresponding to Figure 2.14 are shown in Figure 2.15. All data
are shown using a constant scale. Only the results from acoustic simulations (Figures
2.8 and 2.9) were multiplied by a constant factor to account for amplitude differences
due to the different forward solver used. For all wave-field plots a common colour scale,
shown in Figure 2.7a, is used. The seismogram traces are normalised to the maximum
value of all traces shown in the same panel, but in Figures 2.8 and 2.9 they are shown
trace normalised; the same scaling approach is used for the seismogram spectra. If two
traces or spectra are shown in the same panel, one of the lines is shifted vertically for
display purposes.

2.2.1 Validity of the acoustic approximation and effects of a free
surface

As can be seen from Figure 2.8, the elastic and acoustic modelling results are identical in
homogeneous unbounded media (such as model FH), provided that an explosive source
is used and the motion is sensed only as excess pressure. The reason is that only radially

PSfrag replacements

(a)

(b)

0

0

min

min

max

max

colorbar for
sensitivity plots

colorbar for
snapshot plots

Figure 2.7: Colour bars for the colour plots showing (a) wave field snapshots and (b)
sensitivities.
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model A B C D E

FH 5.7 7.0 9.0 11.6 18.0

t [ms]
HH 5.7 7.0 9.0 11.6 18.0
HG 6.6 9.0 12.3 17.0 25.0
HL 5.7 7.0 9.0 11.6 18.0

all 100 300 500 700 900 f [Hz]

Table 2.3: Overview of the times and frequencies for which wave field snapshots and
sensitivity cross sections are shown in Figures 2.8 to 2.13 and Figures 2.16 to 2.25,
respectively.

symmetric wave fields are excited by such an omni-directional source and the detector is
also omni-directional; that is, it responds only to (radial) pressure.

In the presence of a free surface (model HH), the elastic wave field loses its radial
symmetry due to the emanating surface waves. This is demonstrated in the left panels of
Figure 2.9. By contrast, the acoustic approximation (right panels in Figure 2.9) is simply
the full-space solution (Figure 2.8) cut in half. The radial symmetry is retained and the
surface waves are absent. This clearly demonstrates the inadequacy of the acoustic
approximation in the presence of a free surface or any internal boundary surface along
which significant interface waves (Scholte, Stoneley or tunnel waves) could propagate.

2.2.2 Adding source and receiver directionality

In surface-based seismic measurements, the scalar pressure field (ep, see Table 2.2 for
short notations of source and receiver types) is routinely recorded in marine exploration
but rarely in on-shore surveying. Instead, single component (typically the vertical) or
several components of the vector wave field of the particle velocity are sensed with
geophones or seismometers (ex , ez). Besides explosion sources on land, it is also common
practise to employ directed sources (zx , zz , xx , xz), such as a weight drop, sledge
hammer, or vibrator. Figure 2.10 shows the simulation results for the source/receiver
combinations ex and ez . Compared with the results from the ep combination, shown in
Figure 2.9, there are quite substantial changes in all quantities displayed. These strong
differences indicate that directionality may have an important influence on the waveform
sensitivities and data information content, which are discussed later in this chapter.
Results for the directed source and receiver combinations zz and zx are shown in Figure
2.11. Qualitatively, they are comparable to the results from ez and ex shown in Figure
2.10.

2.2.3 The effect of vertical heterogeneity

The effect of subsurface properties which vary as a function of depth (constant, piecewise
increase or continuous increase) is illustrated in Figures 2.12 to 2.15. The time-domain
snapshots for the homogeneous half space HH (Figure 2.12a) and the gradient model HG
(Figure 2.12b) are quite similar, but a horizontal discontinuity, as in the layer model HL
(Figure 2.12c), affects the wave fields in a major way. Similar observations are made for
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Figure 2.8: Comparison of elastic (left panels) to the corresponding acoustic (right
panels) wave propagation through model FH. (a) shows time-domain solutions for times
A to E (see Table 2.3), also marked on the seismograms, for a receiver at the position
denoted in the wave field plots. (b) displays the real part of the frequency-domain
representations of (a) for frequencies A to E (see Table 2.3). At the bottom, the real
parts of the frequency spectra of the seismograms shown in (a) are included. All data are
scaled to a common value, with a constant factor between acoustic and elastic results;
see Figure 2.7a for the colour scale and Table 2.2 for the source and receiver symbols.
For display purposes the traces and spectra at the bottom of the panels are drawn with
a vertical offset.
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Figure 2.9: As for Figure 2.8, but for wave propagation through model HH. The free
surface causes the formation of surface waves in the elastic solution (left panels), whereas
the solution for the acoustic approximation (right panels) remains unchanged with respect
to the full-space solution shown in Figure 2.8. For display purposes the traces and spectra
at the bottom of the panels are drawn with a vertical offset.
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Figure 2.10: Horizontal (left panels) and vertical (right panels) particle velocities for a
wave excited by an explosive source, propagated through model HH. (a) shows time-
domain solutions for times A to E (see Table 2.3), also marked on the seismograms, for
a receiver at the position denoted in the wave field plots. (b) displays the real part of
the frequency-domain representations of (a) for frequencies A to E (see Table 2.3). At
the bottom, the real parts of the frequency spectra of the seismograms shown in (a) are
included. All data are scaled to a common value, frequency-domain results are scaled
up by a factor of two; see Figure 2.7a for the colour scale and Table 2.2 for the source
and receiver symbols. For display purposes the traces and spectra at the bottom of the
panels are drawn with a vertical offset.
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Figure 2.11: As for Figure 2.10, but for a single force source in the vertical direction.
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the frequency-domain results shown in Figure 2.14. The reference seismograms extracted
at a source-receiver distance of 8 m are shown in Figure 2.13 and the real parts of the
corresponding seismogram frequency spectra in 2.15.

The reason for the qualitatively similar results for models HH and HG as opposed
to the wave fields propagated through model HL is the appearance of new phases in
the wave field, caused by the discontinuity at three metres depth in model HL. The
wave field propagating through models HH and HG only consists of direct and diving
body waves and the surface waves of Rayleigh type. The wave field propagating through
model HL, on the other hand, additionally includes body wave phases due to reflections,
mode conversions and multiple reverberations at the discontinuity, as well as refracted

Time domain — z-directed source
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Figure 2.12: Comparison of time-domain representations of horizontal (left panels) and
vertical (right panels) particle velocities for a wave excited by a single force source in
the vertical direction, propagated through (a) model HH, (b) model HG and (c) model
HL. Figure 2.13 shows seismogram traces for a receiver at the position denoted in the
wave field plots with times B to D (see Table 2.3) marked. All data are scaled to a
common value; see Figure 2.7a for the colour scale and Table 2.2 for the source and
receiver symbols.
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Seismogram traces — z-directed source
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Figure 2.13: Seismogram traces corresponding to the wave field plots shown in Figure
2.12. There the receiver position is marked (see Table 2.2 for the source and receiver
symbols) and snapshots of the particle velocity field at times B to D (see Table 2.3)
are displayed. (a) shows traces for propagation through model HH, (b) for propagation
through model HG and (c) for propagation through model HL. For display purposes the
traces are drawn with a vertical offset.

phases and a substantial portion of guided wave energy contained in the surface waves,
due to the layering. The effect of these additional phases is the presence of persistent
wave energy near to the source at later times; this can be seen in Figure 2.12c.

2.3 Waveform sensitivity analysis

In keeping with the treatment of the waveform characteristics in the previous section,
I next analyse the waveform sensitivities for the different scenarios of acoustic/elastic
media, the absence/presence of a free surface, the source and receiver directionality and
the heterogeneity of the subsurface model. In the elastic case, one needs to distinguish
between the sensitivities with respect to the P- and S-wave velocities.

The sensitivities with respect to density were also computed but for the sake of
brevity are not presented here. Using the relations given in appendix E, I also computed
sensitivities with respect to other choices of parameter sets, i.e the Lamé parameters λ
and µ and the compressibility κ and µ. Since the sensitivities with respect to µ were
qualitatively equivalent to those with respect to vS and the λ- and the κ-sensitivities
strongly resembled those for vP , I kept with the parameters vS and vP , thus avoiding
additional numerical inaccuracies introduced by transformation of the sensitivities into
those for a different parameter set than that employed in the FDTd code.

Using the same notation as in equation (2.17), the sensitivities are denoted by PJij

or SJij in the following, where the left superscript indicates sensitivities with respect
to vP or vS . The super index L used as the right superscript in equation (2.17) and
introduced in equation (2.9) was reduced to its part denoting the source/receiver type
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Frequency domain — z-directed source
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Figure 2.14: Comparison of real parts of the frequency-domain representations of hor-
izontal (left panels) and vertical (right panels) particle velocities for a wave excited by
a single force source in the vertical direction, propagated through (a) model HH, (b)
model HG and (c) model HL. Figure 2.15 shows the real parts of the frequency spectra
of the seismograms for a receiver at the position denoted in the wave field plots, with
the frequencies B to D (see Table 2.3) marked. All data are scaled to a common value;
see Figure 2.7a for the colour scale and Table 2.2 for the source and receiver symbols.
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Seismogram spectra — z-directed source
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Figure 2.15: Real parts of the frequency spectra of the seismogram traces corresponding
to the wave field plots shown in Figure 2.14. There, the receiver position is marked (see
Table 2.2 for the source and receiver symbols) and snapshots of the real parts of the
frequency-domain representation of the particle velocity field at frequencies B to D (see
Table 2.3) are displayed. (a) shows traces for propagation through model HH, (b) for
propagation through model HG and (c) for propagation through model HL. For display
purposes the spectra are drawn with a vertical offset.

ij with i ∈ {e, x , z} and j ∈ {p, x , z} (see Table 2.2), since only sensitivities for the
source/receiver pair with the receiver placed 8 m to the right of the source (see Figure
2.3b) are considered.

Results for the different sensitivity types are shown in Figures 2.16 to 2.25, which
have a common layout resembling that of the wave field plots shown in Figures 2.8 to
2.13. From top to bottom they show sensitivity cross sections (see section 2.1.2 and
Figure 2.5), taken at five different times or frequencies, labelled A, B, C, D and E (see
Table 2.3). Source and receiver locations and types are indicated using the symbols
introduced in Table 2.2. The seismograms for the corresponding source/receiver type
and model and their frequency domain representations are shown at the bottom of the
panels. All data are shown using a constant scale. Only the results from the acoustic
simulations (Figures 2.16 and 2.18) were multiplied by the same constant factor as used
to account for amplitude differences between the elastic and acoustic forward solver in
the case of the wave field plots. For all sensitivity plots a common colour scale, which is
shown in Figure 2.7b, is used. The seismogram traces are normalised to the maximum
value of all traces shown in the same panel, only in Figures 2.16 and 2.18 they are shown
trace normalised; the same scaling approach is used for the seismogram spectra. If two
traces (or spectra) are shown in the same panel, one of the lines is shifted vertically for
display purposes.
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2.3.1 Validity of the acoustic approximation and effects of a free
surface

Homogeneous full-space model FH

Acoustic and elastic full-space sensitivities PJep for model FH are shown in Figure 2.16.
Their shapes are almost identical. Only the overall amplitudes are somewhat reduced
for the elastic sensitivities. This is likely to be an effect of the brute force sensitivity
computations employed in the elastic case.

The early time sensitivities (times A and B) only have significant amplitudes in
the spatial region directly between the source and the receiver. At later times, the high
amplitude sensitivities form ellipses with focal points at the source and receiver positions.
It may seem somewhat counterintuitive that (i) nonzero sensitivities exist at times where
the corresponding seismogram amplitudes are virtually zero (times C, D and E) and
(ii) that significant sensitivities exist outside the region delimited by the source and the
receiver.

These observations can be explained by means of a simple physical interpretation
of the meaning of sensitivities. They express the expected effects on the seismogram
caused by a small perturbation in a particular region (i.e. inversion cell) of the model. If
a model cell would be perturbed (effectively done for the elastic sensitivity computations
and conceptually assumed in the explicit expressions for the acoustic case), then it
represents a diffracting heterogeneity, which produces a scattered wave; the elliptical
isochron pattern is precisely what one would see from a diffractor and hence this explains
the sensitivity patterns in Figure 2.16a.

A comparison of the elastic P- and S-wave sensitivities PJep and SJep for model
FH is shown in Figure 2.17. One might think that the sensitivities with respect to vS

should be zero, because no S-waves are observed in the seismograms, but a look at
the interrelations between sensitivities with respect to different equivalent sets of elastic
parameters, given in Appendix E, shows the reason for SJep being nonzero.

A less mathematical and more physical explanation of the observations related to
the equations in Appendix E can be obtained by looking at the definition of the seismic
P-and S-wave velocities vP and vS :

vP :=

√
κ + 4/3µ

ρ
and vS :=

√
µ

ρ
. (2.19)

Here κ is the bulk modulus, µ is the shear modulus and ρ denotes density (see also
Appendix E). For computing the shear-wave sensitivity, vS needs to be slightly perturbed
(effectively or formally), while keeping vP constant. This is only possible, by increasing
µ and decreasing κ accordingly (or vice versa). The decrease of κ affects the behaviour
of the radiating P-waves, which results in the patterns for SJep shown in the right panels
of Figure 2.17.

Computing P-wave sensitivities requires perturbing κ, while µ must remain fixed.
This implies that computations of the sensitivities with respect to vS and vP require
perturbations of κ with opposite signs. Interestingly, the corresponding P- and S-wave
panels in Figure 2.17 exhibit similar patterns, but they have reversed signs. This may
indicate that κ is the dominant parameter for both PJep and SJep.
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Figure 2.16: Comparison of acoustic and elastic sensitivities in the full space model FH
with the elastic version of PJep given in the left panels and its acoustic approximation in
the right panels. (a) shows time-domain results for times A to E (see Table 2.3), also
marked on the seismograms, for a receiver at the position denoted in the colour plots.
(b) displays the real part of the frequency-domain representations of (a) for frequencies
A to E (see Table 2.3). At the bottom, the real parts of the frequency spectra of the
seismograms shown in (a) are included. All data are scaled to a common value, with a
constant factor between acoustic and elastic results; see Figure 2.7b for the colour scale
and Table 2.2 for the source and receiver symbols.
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Figure 2.17: Sensitivities PJep (left panels) and SJep (right panels) in the full space model
FH. (a) shows time-domain results for times A to E (see Table 2.3), also marked on the
seismograms, for a receiver at the position denoted in the colour plots. (b) displays
the real part of the frequency-domain representations of (a) for frequencies A to E (see
Table 2.3). At the bottom, the real parts of the frequency spectra of the seismograms
shown in (a) are included. All data are scaled to a common value; see Figure 2.7b for
the colour scale and Table 2.2 for the source and receiver symbols.
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Frequency-domain results, shown in Figures 2.16b and 2.17b, are more difficult to
interpret in physical terms. They show oscillating patterns across the entire model, in
which the spatial frequency of the oscillations scales with the temporal frequencies under
consideration. As for the time-domain results, PJep and SJep have similar shapes but
exhibit reversed signs.

Homogeneous half-space model HH

Comparisons of the acoustic and elastic sensitivities PJep for the homogeneous half space
HH are shown in Figure 2.18. Considering the wave field comparisons in Figure 2.9, it
is not surprising that the sensitivities are also very different. The acoustic sensitivities
are basically identical to the full-space results (with regard to the shape), but the elastic
sensitivities are dominated by the effects of the surface wave. Both time- and frequency-
domain sensitivities show high amplitudes near the surface. This suggests that P-wave
information is predominantly carried by the surface wave and the contribution of the
body waves is very small.

Figure 2.19 compares the elastic sensitivities with respect to vP and vS for half
space HH. PJep is repeated from Figure 2.18. Both the time- and frequency-domain
representations of SJep cover a much larger depth range compared with PJep.

2.3.2 Adding source and receiver directionality

As for the waveform analysis, the complexity is now increased by considering source and
receiver directionality. Figure 2.20 shows the elastic sensitivities for the commonly em-
ployed combination ez (explosion source, vertical component geophone), and Figure 2.21
shows the less commonly considered combination ex (explosion source, horizontal com-
ponent geophone). Both combinations exhibit quite complicated time- and frequency-
domain sensitivity patterns. As already observed for the ep case, also the remaining PJej

(j ∈ {x , z}) seem to be dominated by the surface waves. The P-type body waves ought
to manifest themselves in the time-domain sensitivity plots in the form of expanding
ellipses, as observed for the acoustic case in Figure 2.18. There are only hints of such
ellipses, having very small amplitudes.

Interestingly, the P-type body wave contribution seems to be more significant, when
a vertically-directed source is employed. The corresponding plots for the zz and zx cases
are shown in Figures 2.22 and 2.23. Here, both P-type body wave and surface wave
contributions are observed.

For a horizontally-directed source and a horizontal component receiver (configuration
xx , not shown) the sensitivity plots are very similar to those for the ex case shown in
Figure 2.21. The xz sensitivities (also not shown) are identical to those for zx in Figure
2.23, but with reversed signs, as was to be expected regarding the symmetry of the
problem.

2.3.3 The influence of vertical inhomogeneity

As one would anticipate after looking at the wave field analysis (see Figures 2.12 and
2.14), the sensitivities for model HG are very similar to those for model HH. Thus, for
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Figure 2.18: As for Figure 2.16, but for model HH. In the elastic case (left panels), the
emanating surface waves lead to a concentration of the sensitivities close to the surface,
whereas their acoustic approximation (right panels) remain unchanged with respect to
Figure 2.16. For display purposes the spectra are drawn with a vertical offset.
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Figure 2.19: Sensitivities PJep (left panels) and SJep (right panels) in the homogeneous
half space model HH. (a) shows time-domain results for times A to E (see Table 2.3), also
marked on the seismograms, for a receiver at the position denoted in the colour plots.
(b) displays the real part of the frequency-domain representations of (a) for frequencies
A to E (see Table 2.3). At the bottom, the real parts of the frequency spectra of the
seismograms shown in (a) are included. All data are scaled to a common value; see
Figure 2.7b for the colour scale and Table 2.2 for the source and receiver symbols.
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Figure 2.20: Sensitivities PJez (left panels) and SJez (right panels) in the homogeneous
half space model HH. (a) shows time-domain results for times A to E (see Table 2.3), also
marked on the seismograms, for a receiver at the position denoted in the colour plots.
(b) displays the real part of the frequency-domain representations of (a) for frequencies
A to E (see Table 2.3). At the bottom, the real parts of the frequency spectra of the
seismograms shown in (a) are included. All data are scaled to a common value; see
Figure 2.7b for the colour scale and Table 2.2 for the source and receiver symbols.
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Figure 2.21: Sensitivities PJex (left panels) and SJex (right panels) in the homogeneous
half space model HH. (a) shows time-domain results for times A to E (see Table 2.3), also
marked on the seismograms, for a receiver at the position denoted in the colour plots.
(b) displays the real part of the frequency-domain representations of (a) for frequencies
A to E (see Table 2.3). At the bottom, the real parts of the frequency spectra of the
seismograms shown in (a) are included. All data are scaled to a common value; see
Figure 2.7b for the colour scale and Table 2.2 for the source and receiver symbols.
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Figure 2.22: Sensitivities PJzz (left panels) and SJzz (right panels) in the homogeneous
half space model HH. (a) shows time-domain results for times A to E (see Table 2.3), also
marked on the seismograms, for a receiver at the position denoted in the colour plots.
(b) displays the real part of the frequency-domain representations of (a) for frequencies
A to E (see Table 2.3). At the bottom, the real parts of the frequency spectra of the
seismograms shown in (a) are included. All data are scaled to a common value; see
Figure 2.7b for the colour scale and Table 2.2 for the source and receiver symbols.
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Figure 2.23: Sensitivities PJzx (left panels) and SJzx (right panels) in the homogeneous
half space model HH. (a) shows time-domain results for times A to E (see Table 2.3), also
marked on the seismograms, for a receiver at the position denoted in the colour plots.
(b) displays the real part of the frequency-domain representations of (a) for frequencies
A to E (see Table 2.3). At the bottom, the real parts of the frequency spectra of the
seismograms shown in (a) are included. All data are scaled to a common value; see
Figure 2.7b for the colour scale and Table 2.2 for the source and receiver symbols.
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reasons of space economy, here I will only present results for the model HL and directed
sources. Time-domain results are shown in Figure 2.24 and their frequency-domain coun-
terparts are displayed in Figure 2.25. As already observed in the waveform plots, the
additional phases, that is, reflections and mode conversions at the layer interface, the
associated multiple reflections and the head wave propagating along the layer bottom,
play a dominant role. This results in increased sensitivities associated with the P-type
body waves within the entire upper layer with respect to those for the models without a
discontinuity (see left sides of Figures 2.22 and 2.23). Of the sensitivities with respect
to vP , only PJzz has significant amplitude below the layer boundary, especially at later
times (see left side of Figure 2.24a), whereas the sensitivities with respect to vS , espe-
cially SJxx (see right side of Figure 2.24c), all stretch out into the half space and their
amplitude in this region rather increases with time. This behaviour is also reflected in
the frequency-domain representations, where significant amplitude in the half space can
only be observed for PJzz (see left side of Figure 2.25a) and the SJij shown on the right
side of Figure 2.25.

2.4 Data information

After studying waveform characteristics and waveform sensitivities in the previous sec-
tions, the information content of an entire data set will now be analysed by studying
properties of the approximate Hessian matrix. After some preliminary remarks, results
for different experimental setups and subsurface models will be presented.

2.4.1 Preliminaries

A virtual data set

Computing sensitivities with the brute force perturbation approach for a suite of shot
positions would be computationally very demanding. Since all subsurface models con-
sidered in this study are laterally invariant, it is possible to simulate data sets and their
corresponding sensitivities by lateral shifting. I have computed sensitivities for a virtual
data set involving nine shot positions, whereby each shot is recorded at eight receiver
positions evenly spaced at one metre.

The resulting sensitivities cover an area to a depth of four meters and a width of ten
meters. For this area, a coordinate system with the origin in the middle of the free surface
of the model is chosen. It spans x-coordinates from −5 m to 5 m and z-coordinates from
0 m to 4 m, as it is shown in Figure 2.26.

This figure also illustrates how the original data needs to be ‘manipulated’. The
sketch at the top represents the simulation layout and the model parametrisation already
shown in Figures 2.3 and 2.4. Below, it is indicated how the data sets are shifted to obtain
virtual sensitivities for different spatial source/receiver configurations. For example, to
get sensitivities for a shot at position x = 4 m in the new coordinate system, I cut a
subset out of the perturbed volume that starts one metre to the left of the leftmost
receiver and ends one metre to the right of the source. Then, I shift this subset such
that the middle of the region that was cut lies at the origin of the new coordinate system.
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Time domain — HL
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Figure 2.24: Time-domain representation of sensitivities PJij (left panels) and SJij (right
panels) in layer model HL. (a) shows Jzz , (b) Jzx and (c) Jxx for times B to E (see
Table 2.3), also marked on the seismograms shown in (d) for a receiver at the position
denoted in the colour plots. All data are scaled to a common value; see Figure 2.7b for
the colour scale and Table 2.2 for the source and receiver symbols.
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Frequency domain — HL
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Figure 2.25: Real parts of the frequency-domain representation of PJij (left panels) and
SJij (right panels) in HL. (a) shows Jzz , (b) Jzx and (c) Jxx for frequencies B to E (see
Table 2.3), also marked on the real parts of the seismogram frequency spectra shown
in (d). All data are scaled to a common value; see Figure 2.7b for the colour scale and
Table 2.2 for the source and receiver symbols.
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Figure 2.26: Computation scheme for creating J for a virtual data set involving sev-
eral source positions using the sensitivities calculated for only one source position and
exploiting the lateral invariance of the subsurface models.

The complete data set and data selection

The complete data set for the data information analysis comprises data from nine sources,
each recorded at eight receiver positions as shown in Figure 2.26. Referring to the
terminology introduced in equations (2.9) to (2.11) of section 2.1.1, we have a total
number of nrs = 72 source/receiver pairs. For each pair, up to six different configurations
are possible (zz , ez , zx , ex , xz and xx ; pressure sensors are not considered, because they
are rarely used in surface land-seismic applications; also note that xz is redundant to
zx for such a symmetric model). The complete data vector d, introduced in equation
(2.10), therefore consists of nd = 9× 8× 6 = 432 sub-vectors.

In the time domain, each of these sub-vectors includes all time samples of the seis-
mogram for the source/receiver configuration to which the sub-vector belongs; in the
frequency domain each comprises the real and imaginary parts of the frequency spectrum
of this seismogram, for frequencies up to the maximum frequency for which the source
wavelet contains significant energy, fmax = 1500 Hz (see Figure 2.2).

In the following, I analyse the data information content offered by the six different
combinations of source/receiver type. Additionally, I consider data sets including multiple
combinations. For this, the additional pair of source type and receiver component ‘a’ is
introduced, as a shorthand way for denoting the use of both types x and z . Thus, ea
includes ez and ex , za stands for zx and zz , az for xz and zz and aa consists of the four
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configurations xx , xz , zx and zz .

Choosing model parameter sets

Inversion of a real data set usually requires consideration of both the P- and the S-
wave velocities. To gain further insights into the information content of seismic data
sets, I have additionally considered model parameter sets that either include only vP (vS

assumed to be known) or only vS (vP assumed to be known).

RER threshold determination and RER validity

Figure 2.27 shows an example for the semi-logarithmic normalised eigenvalue curves used
to evaluate the information content of the approximate Hessian matrix. These curves
are based on data sets computed for model HH for different choices of data selection. I
have plotted results for the source/receiver configurations xz and zx . Data sets including
all time samples in the time domain and real and imaginary parts of the spectrum for
all frequencies in the frequency domain have been considered and eigenvalue curves are
shown for all three possible selections of model parameters, that is for ‘vP only’, ‘vS

only’ and ‘vP and vS ’.
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Figure 2.27: Semi-logarithmic plot of the normalised eigenvalues λi of the approximate
Hessian matrix computed for the virtual data set for model HH. Complete data sets in
both the time domain (Td) and the frequency domain (Fd), involving the equivalent
configurations zx and xz , are compared.
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Theoretically, all normalised eigenvalue curves included in Figure 2.27 for one par-
ticular parameter set should be identical. However, the lines for equivalent data sets
are only identical for larger eigenvalues and start splitting up for eigenvalues λi < 10−5.
Below this threshold, the curves also do not exhibit the shape one would expect for
an undamped problem, i.e. they are expected to drop off rapidly as shown in Maurer
et al. (2009). Instead, the curves in Figure 2.27 flatten out and seem to reach a plateau
value. I attribute this observation to numerical inaccuracies associated with the brute
force perturbation approach for sensitivity computation, acting like an inherent damping.
This effect is less severe for time-domain data. The FFT of the time-domain results (see
section 2.1.1) may have introduced further inaccuracies.

On the basis of the observations made in Figure 2.27, I have chosen the threshold
value θ = 10−5 for computing the RER values. By choosing such a relatively high value
for θ, effects of numerical inaccuracies can be suppressed, but minor artifacts may persist.
Therefore, subtle differences between RER values for different experimental setups should
not be overinterpreted.

2.4.2 Data information analysis

Information offered by complete data sets

Examples of eigenvalue curves are shown in Figure 2.28. They are computed from
approximate Hessian matrices that include both vP and vS velocity parameters and the
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Figure 2.28: Eigenvalue curves for the approximate Hessian matrix based on complete
data sets and including both vP and vS , from left to right for the three models HH, HG
and HL. Only the parts for λi > θ are shown, such that the RER value of the respective
source/receiver configurations is equivalent to the abscissa value of the corresponding
curve.
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complete seismograms. The curves are plotted such that the RER value corresponds to
the intersections of the curves with the horizontal axes.

For all three models the source/receiver combination zx yields the highest RER values.
The next best option appears to be xx , whereas zz shows the lowest RER values. For
the gradient model HG, the RER values are generally the highest. This is caused by
the low velocities near the surface (see Figure 2.1), which result in shorter wavelengths
compared with the other models. For a fixed model parametrisation, as employed in this
study, the generally shorter wavelengths lead to better constrained model parameters.

Figure 2.28 also illustrates a limitation of the RER criterion. The RER value consid-
ers only the intersection of the eigenvalue curves with a horizontal threshold line, but it
ignores the actual shapes of the curves. It is noteworthy that the curves for combination
xx lie above those for zx at larger eigenvalues, but the xx curves drop off more rapidly
towards smaller eigenvalues. Possible other options for measuring the information con-
tent of a certain data set are offered by Curtis (2004). One alternative to account for
the shape of the spectra is using the determinant of the Hessian matrix

det
(
JT J

)
=

nM∏
i=1

λ̃i , (2.20)

as a measure (corresponds to Θ3 in Curtis, 2004, equation (7)), where the λ̃i are the non-
normalised eigenvalues (see 2.1.3) and nM is the number of model parameters considered
in JT J, i.e. the number of its eigenvalues. Rewriting equation (2.20) for normalised
eigenvalues results in

det
(
JT J

)
= λ̃nM

1 10
PnM

i=1 log λi , (2.21)

where λ̃1 is the maximal eigenvalue, the λi = λ̃i/λ̃1 are the normalised eigenvalues and log
denotes the base 10 logarithm. To focus on the numerical stability, that is on the relation
between the highest and the smallest eigenvalue, the factor λ̃nM

1 should be omitted, and
to get rid of the part of the eigenvalue curves affected by numerical inaccuracies, the
sum should be restricted to the eigenvalues λi > θ above the threshold chosen for the
RER criterion. Thus, a possible new criterion adapted to my study would be

REA :=
1

nM

∑
λi≥θ

log λi , (2.22)

which is the area delineated by the normalised eigenvalue curve, the vertical axis and the
horizontal line λi ≡ θ in a semi-logarithmic plot, shaded grey in Figure 2.6; REA ranges
between 0 and RER(1− θ).

Such a determinant-related measure would return approximately the same value for
curves like those found for the xx combinations as for those found for the xz combinations
in Figure 2.28. It is a topic of future research to investigate in more detail whether the
RER or a determinant-related measure is more useful. The RER is a direct measure of
the size of the null space, whereas the determinant is just an indicator of the numerical
stability of the inversion of the approximate Hessian matrix. Therefore, the RER is
judged to be more relevant for present purposes, but the discussion above may indicate
that the RER probably overestimates the difference between the xx and zx curves.

Figure 2.29 gives an overview of the RER values computed for all three half-space
models and using complete data sets for different source/receiver configurations. The
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Figure 2.29: RER values for complete seismograms or all frequencies for different con-
figuration selection and different models.

term ‘complete’ here denotes the usage of all available time samples, or, equivalently, all
frequencies. The three panels show the RER for approximate Hessian matrices involving
‘vP only’ (left), ‘vS only’ (middle) and ‘vP and vS ’ (right). From a practical point of
view, the scenario ‘vP and vS ’ is most important, because both velocities are usually
unknown. Within each panel, the different source/receiver configurations are sorted
by increasing experimental effort, starting with the combination of a vertically-directed
source and a vertical component geophone (zz) and ending with the combination includ-
ing horizontally-directed and vertically-directed sources as well as horizontal and vertical
component geophones (aa).

Comparison of the ‘vP only’ and ‘vS only’ scenarios reveals that the data information
content of the latter is significantly higher. This is the combined effect of the lower
velocities (shorter wavelengths) and the dominance of the surface waves that are more
sensitive to changes in vS than changes in vP (see section 2.3). Since the RER value
is governed primarily by the least resolved model parameters, the values for the ‘vP and
vS ’ scenario are comparable to the ‘vP only’ case, while the shapes of the curves resemble
those of the ‘vS only’ case.

The RER values for the different components and a particular subsurface model lie
within a relatively narrow range. Considering the numerical accuracy problems and the
approximate nature of the RER value discussed earlier in this section, small variations in
Figure 2.29 should be interpreted with care, but it seems that the zz combinations are
always inferior compared to all other source/receiver combinations. By contrast, the zx
combinations seem to be a particularly good choice.

It should be mentioned, though, that in actual field surveys the implementation of
a horizontally-directed source and/or geophones recording the horizontal component of
the wave field is more problematic than the conventional vertically-directed source in
combination with vertical-component geophones. Additional effort is required to ensure
good ground coupling.
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Using source forces at an angle of 45° to the surface in opposite directions (e.g. by
hitting the opposite sides of a well positioned metal triangular cylinder with a sledge
hammer), followed by the subtraction of the resulting data sets, is an effective way to
produce an ‘equivalent’ horizontally-directed force. Adding the data resulting from the
two source forces at 45° inclination results in data for an ‘equivalent’ vertically-directed
force. When selecting geophones for recording the horizontal component of motion,
great care has to be taken to ensure good sensor quality and ground coupling; simply
using sensors built for recording the vertical component and mounting them horizontally
is not advisable, unless the elements have a very high natural frequency.

It is also worth mentioning that the general shapes of the curves within one panel
of Figure 2.29 are very similar. This implies that the results are not strongly model-
dependent and can be generalised (at least for laterally invariant subsurface models).

Data selection in the time domain

In order to study the influence of the different wave types on the data information content,
three different time windows were applied to the seismograms. They are determined by
a window of the same length as the support of the source wavelet (i.e. the length
of its nonzero part) shown in Figure 2.2, starting at 3 ms and ending at 5 ms. This
window is ‘propagated’ with three different velocities over the seismogram sections (see
Figure 2.30). The first window ‘propagates’ with velocity vP and isolates the P-wave
arrival out of the seismograms (window P). The second window (S) is propagated with
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Figure 2.30: Time window selection on seismogram traces for the example of model HH.
The locations of the source and the receivers is shown in Figure 2.3.
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vS to provide the S-wave contribution and the third window (R) is propagated with
the Rayleigh velocity to match the surface wave train. As shown in Figure 2.30 these
windows may overlap. For the homogeneous half space HH, the Rayleigh velocity can
be computed analytically (Nkemzi, 2008), and for the other two models, HG and HL,
the seismic velocities at the model surface are used for computing the Rayleigh velocity
and propagating the time windows.

This approach captures the direct body waves and the Rayleigh wave, but neglects
the refracted waves, the reflected waves and their multiples and the Love waves in the
case of the layered model HL. Not taking into account these additional phases reflects
the à priori nature of this study and illustrates a problem inherent in choosing data
windows in the time domain, that is, the selected windows are strongly connected to the
elastic parameters of the model under consideration, which are unknown.

Figure 2.31 shows the RER values for the same source/receiver configurations and
models as Figure 2.29, but only time samples from a particular time window are consid-
ered for computing the approximate Hessian matrices. The curves for the complete data
sets (all time samples) are repeated from Figure 2.29 as a reference.

Again, there is not too much difference between the respective models. The surface
wave window R seems to provide the most information, closely followed by the shear
wave window S. The least information can be expected from the P window.

The most important observation in Figure 2.31 is the significant reduction of infor-
mation content described by the RER values obtained with the windowed seismograms.
This was to be expected, for the reasons given in section 2.3.1 regarding the high sen-
sitivities observed outside the region located between source and receiver at later times,
i.e. the coda is the part of the seismogram that would change due to changes of model
parameters in these regions, such that information about these parameters is lost by
using only the time windows suggested above. If the quality of observed seismograms is
sufficiently good, it is therefore advisable to consider the complete seismograms for an
elastic waveform inversion.

Data selection in the frequency domain

Selection of individual frequencies is less model-dependent than windowing the seismo-
grams. The frequency selection can be further constrained when the spectrum of the
seismic source is known approximately.

Figure 2.32 is similar to of Figure 2.31 for frequency-domain data and the different
frequency selections listed in Table 2.4. As a minimal data set, I use just the centre
frequency of the source wavelet, fc = 500 Hz (subset f1). The second subset (f2)
includes the frequencies 100 Hz, 500 Hz and 900 Hz, and f3 is further augmented by
adding 300 Hz and 700 Hz. The subsets f4 and f5 include all frequencies up to 500 Hz
and 900 Hz, respectively. As a reference, the results for all frequencies (f0) are repeated
from Figure 2.29.

As expected, using only a single frequency provides the least information. But, as
already discussed in Maurer et al. (2009) for the acoustic case, selection of only a few
well chosen frequencies can be highly beneficial. This is demonstrated with the results
from subset f2, which contains only three frequencies. The RER values are comparable
or even better than those from f4, which includes 50 frequencies. Subset f3 provides an
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Figure 2.31: RER values for different source/receiver configurations and different time
windows.
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Figure 2.32: RER values for different source/receiver configurations and different fre-
quency selection (see Table 2.4 for the abbreviations fi).
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subset frequency selection [Hz] nf

f0 0-1500 151
f1 500 1
f2 100,500,900 3
f3 100,300,500,700,900 5
f4 0-500 50
f5 0-900 90

Table 2.4: Frequency subsets used for computing the RER values shown in Figure 2.32.
nf is the number of frequencies contained in the respective subsets and f0 is the complete
set.

excellent benefit-cost-ratio. With only five frequencies, relatively high RER values can be
achieved. If computational costs are not an issue, subset f5, consisting of 90 frequencies,
may be a useful option. Of course, the complete data set f0 provides the highest RER
values, but the very high frequencies, included in f0 and omitted in f5, will have small
amplitudes and may therefore be strongly contaminated by noise.

Results shown in Figure 2.32 indicate that, with a judicious selection of a few frequen-
cies, large parts of the data information content offered by the complete seismograms
can be exploited. This seems to be much more difficult in the time domain, where
subsets are generated by data windowing (Figure 2.31).

2.5 Conclusions

In this chapter, I have analysed some properties of elastic waveform data using a few
very simple 1D models and various recording configurations and source/receiver types
and directivity configurations. Despite the simplicity of the experimental layouts, the
study revealed a number of important results that may influence (i) how seismic data
sets, amenable for characterising the shallow subsurface, should be collected, and (ii) how
waveform inversions should be performed.

1. Wave field and waveform sensitivity analyses have clearly indicated the inappropri-
ateness of the acoustic approximation. The acoustic approximation would require
the data to be windowed around the first arriving P-wave, but for small offsets
such a time window may still be contaminated by S-wave and surface wave ar-
rivals. Furthermore, it was shown in Figure 2.31 that large parts of the information
content of the seismograms is lost, when the data are windowed around specific
arrivals.

2. Comparisons of different source/receiver directivity configurations revealed that
there are surprisingly small differences between the different combinations. Gen-
erally, seismic waves excited by a vertical force (e.g. a weight drop or sledge
hammer) and recorded with vertical-component geophones provide the least infor-
mation, whereas the combination of a vertical force and a horizontal-component
receiver seems to be most favourable, if one is prepared to make the additional
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effort for implementing this uncommon recording configuration in an actual field
survey.

3. My investigations are not entirely conclusive as to whether time- or frequency-
domain inversions are more effective. The sensitivity patterns in the two domains
are very different. If the complete seismograms and all frequencies are considered,
the results are identical, but the picture changes when selected time windows or
only a few frequencies are analysed. Information content decreases quite con-
siderably for time-windowed seismograms, but judicious selection of a few key
frequencies can maintain similar information content as would be offered by us-
ing all frequencies. This at least suggests higher efficiency of frequency-domain
inversions, as has been reported by others (e.g. Sirgue and Pratt, 2004).

4. The above findings are not strongly model-dependent. Results for all the subsurface
models considered in this study led to similar conclusions, keeping in mind the fact
that lateral model variations were not taken into account.
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Chapter 3

Theory, implementation and
validation of a frequency-domain
finite element (FEM) forward solver

In this chapter I describe a frequency-domain finite element (FEM) forward solver for
2.5D elastic problems that I developed as part of my thesis. I start with the theoretical
and technical aspects, describing my implementation of the FEM coding with perfectly
matched layers (PMLs). The second part of the chapter addresses the accuracy and
efficiency of the algorithm. Here, I will restrict myself to the pure 2D problem, which
is a special case (line source or ky ≡ 0) of the 2.5D problem (point source). This is
required for making comparisons with the time-domain FDTd code already considered
in chapter 2. Appraising the accuracy of the full 2.5D solution is more complicated.
Therefore, I have devoted a separate chapter to this issue (chapter 4).

3.1 Theory and formulae

After giving the elastic equations of motion, I present my implementation of the finite
element method. My approach is similar to that described in Min et al. (2003), but some
modifications were required to facilitate 2.5D computations. Next, I give a short moti-
vation for using Perfectly Matched Layers (PMLs) and show how they are implemented
in the code. After that, the problem of source implementation is addressed and finally
the procedure to assemble the complete system matrix out of the sub-matrices for the
single elements is explained.
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3.1.1 2.5D elemental equations

The equations of motion

In the frequency domain, the 3D equations of motion for an elastic, isotropic medium
can be written as (e.g. Aki and Richards, 2009)

0 = ρω2ūx + ∂x [(λ + 2µ)∂x ūx + λ(∂y ūy + ∂z ūz)]

+ ∂y [µ(∂y ūx + ∂x ūy )]

+ ∂z [µ(∂z ūx + ∂x ūz)]

+ f̄x

(3.1a)

0 = ρω2ūy + ∂x [µ(∂y ūx + ∂x ūy )]

+ ∂y [(λ + 2µ)∂y ūy + λ(∂x ūx + ∂z ūz)]

+ ∂z [µ(∂z ūy + ∂y ūz)]

+ f̄y

(3.1b)

0 = ρω2ūz + ∂x [µ(∂z ūx + ∂x ūz)]

+ ∂y [µ(∂z ūy + ∂y ūz)]

+ ∂z [(λ + 2µ)∂z ūz + λ(∂x ūx + ∂y ūy )]

+ f̄z ,

(3.1c)

where the ūi are the components of the vector field of spectral displacement ū, ρ is the
density, λ and µ are the Lamé parameters, ω = 2πf is the angular frequency and the
f̄i , i ∈ {x , y , z} are the components of the source force. The definition of the Fourier
transform that I use is given in Appendix A.1. Note, that the bar above the displacement
and force terms indicates Fourier transformation with respect to time.

For obtaining the corresponding 2.5D solution, equations (3.1) are Fourier trans-
formed with respect to the cross line coordinate y , using (A.2). This leads to the 2.5D
frequency domain elastic equations

0 = ρω2¯̄ux + ∂x [(λ + 2µ)∂x ¯̄ux + λ(iky ¯̄uy + ∂z ¯̄uz)]

+ iky [µ(iky ¯̄ux + ∂x ¯̄uy )]

+ ∂z [µ(∂z ¯̄ux + ∂x ¯̄uz)]

+ ¯̄fx

(3.2a)

0 = ρω2¯̄uy + ∂x [µ(iky ¯̄ux + ∂x ¯̄uy )]

+ iky [(λ + 2µ)iky ¯̄uy + λ(∂x ¯̄ux + ∂z ¯̄uz)]

+ ∂z [µ(∂z ¯̄uy + iky ¯̄uz)]

+ ¯̄fy

(3.2b)

0 = ρω2¯̄uz + ∂x [µ(∂z ¯̄ux + ∂x ¯̄uz)]

+ iky [µ(∂z ¯̄uy + iky ¯̄uz)]

+ ∂z [(λ + 2µ)∂z ¯̄uz + λ(∂x ¯̄ux + iky ¯̄uy )]

+ ¯̄fz ,

(3.2c)

where ky is the wavenumber corresponding to the y -direction and the double bar indi-
caties double Fourier transformation (with respect to time and y -coordinate). Here, I
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made use of the differentiation property of Fourier transformation pairs, ∂
∂y

¯̄u = iky
¯̄u. In

contrast to equation (3.1), this is a differential equation in only two variables, x and z ,
with ky appearing as a parameter.

The Galerkin method

An important concept of a finite element (FEM) algorithm is the so called weak for-
mulation of the underlying equations of motion (3.2) (e.g. Brenner and Scott, 2008).
Assuming the components of the solution vector ¯̄u to lie within a certain vector space
— ¯̄ui ∈ U —, I compute the inner product of the equations (3.2) with an arbitrary test
function wA ∈ U , defined as an integration over the computational domain. Performing∫

Ω
wA

{
(3.2a)

}
dΩ, for example for the x-component results in

0 =

∫
Ω

{
wAρω

2¯̄ux + wA
¯̄fx
}

dΩ

+

∫
Ω

{− ∂xwA [(λ + 2µ)∂x ¯̄ux + λ(iky ¯̄uy + ∂z ¯̄uz)]

+ ikywA [µ(iky ¯̄ux + ∂x ¯̄uy )]

− ∂zwA [µ(∂z ¯̄ux + ∂x ¯̄uz)]
}

dΩ

+

∮
∂Ω=Γ

{
wA [(λ + 2µ)∂x ¯̄ux + λ(iky ¯̄uy + ∂z ¯̄uz)] nx

+ wA [µ(∂z ¯̄ux + ∂x ¯̄uz)] nz

}
dΓ,

(3.3)

where I have carried out an integration by parts, giving rise to the line integral over the
boundary Γ of the computational domain Ω. Requiring that

0 ≡
∮

∂Ω=Γ

{
wA [(λ + 2µ)∂x ¯̄ux + λ(iky ¯̄uy + ∂z ¯̄uz)] nx +wA [µ(∂z ¯̄ux + ∂x ¯̄uz)] nz

}
dΓ (3.4)

imposes natural Neumann boundary conditions on the solution, that is, ¯̄u is the solution
for a free surface all around the computational domain. Some algebraic reformulations
of condition (3.4) lead to

0 =

∫
Ω

{
wA

(
ρω2 − µk2

y

)
¯̄ux + wA

¯̄fx + ikywAµ∂x ¯̄uy

− ∂xwA [(λ + 2µ)∂x ¯̄ux + λ(iky ¯̄uy + ∂z ¯̄uz)]− ∂zwA [µ(∂z ¯̄ux + ∂x ¯̄uz)]
}

dΩ,

(3.5)

which is still equivalent to equation 3.2a.
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Now, the actual approximation step is carried out, which makes the numerical treat-
ment of the equation possible. Instead of aiming for the exact solution ¯̄u, I compute
its projection U = PN

¯̄u onto a finite dimensional subspace UN ⊂ U , spanned by the
piecewise linear shape functions NA. The projection of component ¯̄uζ onto U can be
written as

PN ¯̄uζ =
∑

i

UAζNi , ζ ∈ {x , y , z}. (3.6)

Following the Galerkin formalism (see for example Brenner and Scott, 2008) the
arbitrary test functions in (3.5) are chosen to coincide with the shape functions, that is
wA = NA, resulting in

0 =

∫
Ω

Ni
¯̄fx dΩ +

∑
B

UB
x

∫
Ω

{
Ni

(
ρω2 − µk2

y

)
Nj

}
dΩ

+
∑
B

UB
x

∫
Ω

{− ∂xNi(λ + 2µ)∂xNj − ∂zNiµ∂zNj

}
dΩ

+
∑
B

UB
y

∫
Ω

{− ∂xNiλikyNj + ikyNiµ∂xNj

}
dΩ

+
∑
B

UB
z

∫
Ω

{− ∂xNiλ∂zNj + ∂zNiµ∂xNj

}
dΩ.

(3.7)

By means of such an approach, the equations of motion (3.2) can be turned into a
matrix equation, as demonstrated in the following section.

Matrix formulation

To complete the discretisation, the computational domain is divided into the eponymous
finite elements. I use simple rectangular elements with corner nodes I , J , K , and L as
depicted in Figure 3.1.

For now, the derivation is restricted to equations for one finite element Ωe ⊂ Ω. This
is possible, since the integration over the complete computational domain can simply be
split into a sum of integrations over the single elements. This will be described in more
detail in section 3.1.4. One of the addends constituting equation (3.5) then reads

0 =

∫
Ωe

{
wA

(
ρω2 − µk2

y

)
¯̄ux + wA

¯̄fx + ikywAµ∂x ¯̄uy

− ∂xwA [(λ + 2µ)∂x ¯̄ux + λ(iky ¯̄uy + ∂z ¯̄uz)]− ∂zwA [µ(∂z ¯̄ux + ∂x ¯̄uz)]
}

dΩ.

(3.8)

Ωe = [x1, x2]× [z1, z2] ⊂ R2 is the area of one element in the FEM-mesh and for
convenience I introduce a local coordinate system as shown in Figure 3.1 (compare with
Min et al., 2003, Figure A1, which has reversed z-direction). Denoting the element’s
upper left corner with (x1, z1) and its lower right corner with (x2, z2), the relations
between the global and local coordinates for this element can be written as

ξ =
2

∆x
(x − xm), η =

2

∆z
(z − zm), (3.9a)
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Figure 3.1: One element of the FEM grid with local (ξ, η) and global (x , z) coordinate
systems indicated.

where

xm =
1

2
(x1 + x2) and zm =

1

2
(z1 + z2) (3.9b)

are its midpoint coordinates and

∆x = x2 − x1 and ∆z = z2 − z1 (3.9c)

denote its width and height. With these relations, the derivatives and the volume element
can be rewritten as

∂x =
2

∆x
∂ξ, ∂z =

2

∆z
∂η and dΩ = dx dz =

∆x∆z

4
dξ dη (3.10)

(c.f. Min et al., 2003, equations (A9) to (A12)).
The linear shape functions NA, A ∈ {I , J , K , L} are chosen to be of tetrahedal shape,

assuming a value of one at the location of their respective nodes and zero at every other
node, that is,

NI =
1

4
(1− ξ)(1− η) NJ =

1

4
(1− ξ)(1 + η)

NK =
1

4
(1 + ξ)(1− η) NL =

1

4
(1 + ξ)(1 + η)

(3.11)

(compare with Min et al., 2003, equation (A8)). With these definitions, the projection
(3.6) onto UN can be written as

Ue
ζ =

∑
A

Ue
AζNA, Ue

Aζ := ¯̄uζ (xA, zA) , ζ ∈ {x , y , z}, (3.12)

where I defined Ue
Aζ as the value of the solution vector component ¯̄uζ at the location of

node A.
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The Galerkin step, that is choosing wA = NA, then leads to

0 =

∫
Ωe

NA
¯̄fx dΩ +

∑
B

Ue
Bx

∫
Ωe

{
NA

(
ρω2 − µk2

y

)
NB

}
dΩ

+
∑
B

Ue
Bx

∫
Ωe

{− ∂xNA(λ + 2µ)∂xNB − ∂zNAµ∂zNB

}
dΩ

+
∑
B

Ue
By

∫
Ωe

{− ∂xNAλikyNB + ikyNAµ∂xNB

}
dΩ

+
∑
B

Ue
Bz

∫
Ωe

{− ∂xNAλ∂zNB + ∂zNAµ∂xNB

}
dΩ.

(3.13)

This can be abbreviated to

0 = F e
Ax +

∑
B

{
Me

ABxxUe
Bx + K e

ABxxUe
Bx + K e

ABxyUe
By + K e

ABxzUe
Bz

}
; (3.14)

which is the elemental version of (3.7). Explicit expressions for Me
ABii and K e

ABij with
i , j ∈ {x , y , z} are given in equations (3.20) and (3.21)—see later.

The steps that led from equation (3.2a) to (3.13) can be repeated for equations (3.2b)
and (3.2c), thus transforming the equations of motion (3.2) into the matrix equation
(modified after Min et al., 2003, equation (A2))

MeUe + KeUe + Fe = 0, (3.15)

where we combined the scalar values FAζ , UBζ , MABζυ and KABζυ into the source vector

Fe =

Fe
x

Fe
z

Fe
y

 with Fe
ζ =


F e

Iζ

F e
Jζ

F e
Kζ

F e
Lζ

 , ζ ∈ {x , y , z}, (3.16)

the elemental displacement vector,

Ue =

Ue
x

Ue
z

Ue
y

 with Ue
ζ =


Ue

Iζ

Ue
Jζ

Ue
Kζ

Ue
Lζ

 , ζ ∈ {x , y , z}, (3.17)

the elemental mass matrix

Me =

Me
xx 0 0

0 Me
zz 0

0 0 Me
yy

 with (3.18a)

Me
ζζ =


Me

IIζζ Me
IJζζ Me

IKζζ Me
ILζζ

Me
JIζζ Me

JJζζ Me
JKζζ Me

JLζζ

Me
KIζζ Me

KJζζ Me
KKζζ Me

KLζζ

Me
LIζζ Me

LJζζ Me
LKζζ Me

LLζζ

 , ζ ∈ {x , y , z} (3.18b)
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and the elemental stiffness matrices

Ke =

Ke
xx Ke

xz Ke
xy

Ke
zx Ke

zz Ke
zy

Ke
yx Ke

yz Ke
yy

 with (3.19a)

Kζυ =


K e

IIζυ K e
IJζυ K e

IKζυ K e
ILζυ

K e
JIζυ K e

JJζυ K e
JKζυ K e

JLζυ

K e
KIζυ K e

KJζυ K e
KKζυ K e

KLζυ

K e
LIζυ K e

LJζυ K e
LKζυ K e

LLζυ

 , ζ, υ ∈ {x , y , z}. (3.19b)

The components of the mass and the stiffness matrix are defined as specified in equation
3.13, that is,

Me
ABxx =

∫
Ωe

NA

(
ω2ρ− k2

yµ
)

NB dΩ

Me
AByy =

∫
Ωe

NA

(
ω2ρ− k2

y (λ + 2µ)
)

NB dΩ

Me
ABzz = MABxx ,

(3.20)

and

K e
ABxx = −

∫
Ωe

{
(∂xNA)(λ + 2µ)(∂xNB) + (∂zNA)µ(∂zNB)

}
dΩ (3.21a)

K e
AByy = −

∫
Ωe

{
(∂xNA)µ(∂xNB) + (∂zNA)µ(∂zNB)

}
dΩ (3.21b)

K e
ABzz = −

∫
Ωe

{
(∂zNA)(λ + 2µ)(∂zNB) + (∂xNA)µ(∂xNB)

}
dΩ (3.21c)

K e
ABxy = −

∫
Ωe

{
(∂xNA)λ(ikyNB)− (ikyNA)µ(∂xNB)

}
dΩ (3.21d)

K e
AByx = −

∫
Ωe

{− (ikyNA)λ(∂xNB) + (∂xNA)µ(ikyNB)
}

dΩ (3.21e)

K e
ABxz = −

∫
Ωe

{
(∂xNA)λ(∂zNB) + (∂zNA)µ(∂xNB)

}
dΩ (3.21f)

K e
ABzx = −

∫
Ωe

{
(∂zNA)λ(∂xNB) + (∂xNA)µ(∂zNB)

}
dΩ (3.21g)

K e
AByz = −

∫
Ωe

{− (ikyNA)λ(∂zNB) + (∂zNA)µ(ikyNB)
}

dΩ (3.21h)

K e
ABzy = −

∫
Ωe

{
(∂zNA)λ(ikyNB)− (ikyNA)µ(∂zNB)

}
dΩ. (3.21i)
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The values of the model parameters λ, µ and ρ are constant within each element,
such that these quantities can be taken outside the integrals in (3.20) and (3.21), which
leaves only the basic integrals

IAB :=

∫
Ωe

NANB dΩ =

[
4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

]
∆x∆z

36
(3.22a)

IAB
xy :=

∫
Ωe

∂xNANB dΩ =

[ −2 −1 −2 −1
−1 −2 −1 −2
+2 +1 +2 +1
+1 +2 +1 +2

]
∆z

12
(3.22b)

IAB
yx :=

∫
Ωe

NA∂xNB dΩ =

[ −2 −1 +2 +1
−1 −2 +1 +2
−2 −1 +2 +1
−1 −2 +1 +2

]
∆z

12
(3.22c)

IAB
zy :=

∫
Ωe

∂zNANB dΩ =

[ −2 −2 −1 −1
+2 +2 +1 +1
−1 −1 −2 −2
+1 +1 +2 +2

]
∆x

12
(3.22d)

IAB
yz :=

∫
Ωe

NA∂zNB dΩ =

[ −2 +2 −1 +1
−2 +2 −1 +1
−1 +1 −2 +2
−1 +1 −2 +2

]
∆x

12
(3.22e)

IAB
xx :=

∫
Ωe

∂xNA∂xNB dΩ =

[
+2 +1 −2 −1
+1 +2 −1 −2
−2 −1 +2 +1
−1 −2 +1 +2

]
∆z

6∆x
(3.22f)

IAB
zz :=

∫
Ωe

∂zNA∂zNB dΩ =

[
+2 −2 +1 −1
−2 +2 −1 +1
+1 −1 +2 −2
−1 +1 −2 +2

]
∆x

6∆z
(3.22g)

IAB
xz :=

∫
Ωe

∂xNA∂zNB dΩ =

[
+1 −1 +1 −1
+1 −1 +1 −1
−1 +1 −1 +1
−1 +1 −1 +1

]
1

4
(3.22h)

IAB
zx :=

∫
Ωe

∂zNA∂xNB dΩ =

[
+1 +1 −1 −1
−1 −1 +1 +1
+1 +1 −1 −1
−1 −1 +1 +1

]
1

4
(3.22i)

to be computed. I use the abbreviation A, B ∈ {I , J , K , L} and the coefficients for the
different combinations of node indices given in the small matrices are ordered following

the pattern

[
II IJ IK IL
JI JJ JK JL
KI KJ KK KL
LI LJ LK LL

]
.

With this, the components of M can be rewritten as

Me
ABζζ = fζ IAB , ζ ∈ {x , y , z} with

fx :=ω2ρ− k2
yµ

fy :=ω2ρ− k2
y (λ + 2µ)

fz :=ω2ρ− k2
yµ,

(3.23)
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and those of K take the form

K e
ABxx = − [(λ + 2µ)IAB

xx + µIAB
zz

]
K e

AByy = −µ [IAB
xx + IAB

zz

]
K e

ABzz = − [(λ + 2µ)IAB
zz + µIAB

xx

]
K e

ABxy = −iky

[
λIAB

xy − µIAB
yx

]
K e

AByx = −iky

[−λIAB
yx + µIAB

xy

]
K e

AByz = −iky

[−λIAB
yz + µIAB

zy

]
K e

ABzy = −iky

[
λIAB

zy − µIAB
yz

]
K e

ABxz = − [λIAB
xz + µIAB

zx

]
K e

ABzx = − [λIAB
zx + µIAB

xz

(3.24)

3.1.2 Boundary conditions

Equations (3.23) and (3.24) could now be immediately implemented in a FEM forward
solver. This would be correct for all interior nodes, but at the boundaries this would
result in so-called natural or Neumann boundary conditions with stresses being equal to
zero (see also section 3.1.1), which imply a traction free surface. However, at least at
the ground boundaries (i.e. the left and right sides and the bottom of the model), the
solution for an unbounded medium is required.

One possibility to address the problem of truncating an infinite modelling domain
would be to employ non-reflecting boundary conditions (NRBCs) of either local or non-
local nature (e.g. Givoli, 1991). Such boundary conditions are efficient in the sense that
no additional cells need to be added, but they work properly only for particular shapes of
the modelling domain, and certain polarisations and propagation directions of the seismic
waves.

An alternative option is to implement sponge-like boundary layers, in which gradual
damping of the wave fields towards the artificial boundaries is enforced (e.g. Cerjan et al.,
1985). A drawback of these sponge-layers is that spurious reflections may occur in the
absorbing layer (Sarma et al., 1998).

Perfectly matched layers (PMLs)

Berenger (1994) proposed the concept of perfectly matched layers (PMLs) to overcome
this problem. He proposed them in the context of electromagnetic wave modelling, but
his ideas have been modified and adapted to a wide range of other wave propagation
modelling problems (de Hoop et al., 2007).

The basic idea of the PML approach is to put an additional layer around the com-
putational domain that matches the latter perfectly in the sense that waves passing the
boundary between the normal medium and the layer are not reflected since they do not
‘see’ any change of the material properties. The original idea of Berenger (1994) was
to devise an unphysical artificial material exhibiting different model parameters for wave
field components tangential and normal to the boundary (split field approach) In this
way, the reflection coefficient at the boundary can be forced to be zero, but the waves
are nonetheless damped in the direction perpendicular (normal) to the boundary. At
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the outermost boundaries, the amplitudes should be very small. Due to the Neumann
condition at the outermost boundaries, the waves are totally reflected back into the PML
layer. Here, they are further attenuated, such that the amplitudes should be negligible,
when they reach the physical medium.

As an alternative to the split field approach one can employ a complex coordinate
transformation within the PMLs. This is referred as coordinate stretching. I have im-
plemented this technique by following Zheng and Huang (2002) and Basu and Chopra
(2003).

For the complex coordinate variables x̃ , ỹ and z̃ , Zheng and Huang (2002, equation
(9)) use

ζ̃ = ζ0 +

ζ∫
ζ0

ε̃ζ(ζ
′) dζ ′ (ζ ∈ {x , y , z}), (3.25)

whereas Basu and Chopra (2003, equation (6)) employ

ζ̃ =

ζ∫
0

εζ(ζ
′) dζ ′ (ζ ∈ {x , y , z}). (3.26)

Note that the variables in Equations (3.25) and (3.26) were changed from the original pa-
pers to assure notational consistency within my thesis. Both formulations are equivalent
when choosing

εζ(ζ
′) =

{
1 if ζ ′ ≤ ζ0

ε̃ζ(ζ
′) if ζ ′ > ζ0

(ζ ∈ {x , y , z}). (3.27)

Modified equations of motion

Replacing the coordinates {x , y , z} in the 3D equations of motion (3.1) by their stretched
counterparts {x̃ , ỹ , z̃} defined in (3.26) and expressing the result again in {x , y , z}, yields
the new PML equations (Zheng and Huang, 2002, equations (22-30))

0 = ρω2εxεyεz ūx + ∂x

[
(λ + 2µ)

εyεz

εx
∂x ūx + λ(εz∂y ūy + εy∂z ūz)

]
+ ∂y

[
µ(εz∂x ūy +

εzεx

εy
∂y ūx)

]
+ ∂z

[
µ(εy∂x ūz +

εxεy

εz
∂z ūx)

]
+ f̄x

(3.28a)
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0 = ρω2εxεyεz ūy + ∂x

[
µ(εz∂y ūx +

εyεz

εx
∂x ūy )

]
+ ∂y

[
(λ + 2µ)

εzεx

εy
∂y ūy + λ(εz∂x ūx + εx∂z ūz)

]
+ ∂z

[
µ(εx∂y ūz +

εxεy

εz
∂z ūy )

]
+ f̄y

(3.28b)

0 = ρω2εxεyεz ūz + ∂x

[
µ(εy∂z ūx +

εyεz

εx
∂x ūz)

]
+ ∂y

[
µ(εx∂z ūy +

εzεx

εy
∂y ūz)

]
+ ∂z

[
(λ + 2µ)

εxεy

εz
∂z ūz + λ(εy∂x ūx + εx∂y ūy )

]
+ f̄z .

(3.28c)

Before transforming the 3D equations (3.28) into a 2.5D formulation (using equation
(A.2)), I set εy ≡ 1. This is required, because 2.5D computations imply the assumption
that the problem is invariant with respect to translations in the cross-line (y -) direction.
This choice does not cause any problems, since the transformation to the ω–x–ky–z-
domain allows the model to stretch out infinitely in the y -direction, such that there is
no need to truncate it in this direction and thus no spurious reflections are created by
an artificial boundary parallel to the x–z-plane.

Bearing these considerations in mind, the 2.5D equations of motion are of the form

0 = ρω2εxεz ¯̄ux + ∂x

[
(λ + 2µ)

εz

εx
∂x ¯̄ux + λ(εz iky ¯̄uy + ∂z ¯̄uz)

]
+ iky [µ(εz∂x ¯̄uy + εzεx iky ¯̄ux)]

+ ∂z

[
µ(∂x ¯̄uz +

εx

εz
∂z ¯̄ux)

]
+ ¯̄fx

(3.29a)

0 = ρω2εxεz ¯̄uy + ∂x

[
µ(εz iky ¯̄ux +

εz

εx
∂x ¯̄uy )

]
+ iky [(λ + 2µ)εzεx iky ¯̄uy + λ(εz∂x ¯̄ux + εx∂z ¯̄uz)]

+ ∂z

[
µ(εx iky ¯̄uz +

εx

εz
∂z ¯̄uy )

]
+ ¯̄fy

(3.29b)

0 = ρω2εxεz ¯̄uz + ∂x

[
µ(∂z ¯̄ux +

εz

εx
∂x ¯̄uz)

]
+ iky [µ(εx∂z ¯̄uy + εzεx iky ¯̄uz)]

+ ∂z

[
(λ + 2µ)

εx

εz
∂z ¯̄uz + λ(∂x ¯̄ux + εx iky ¯̄uy )

]
+ ¯̄fz .

(3.29c)
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To supply the PMLs with the desired attenuation properties and at the same time
keep the model unchanged in the true computational domain, a model zonation as
depicted in Figure (3.2) has to be carried out. In each zone the εζ in (3.26) are given by

εζ = 1− gζ(ζ) (ζ ∈ {x , z}), (3.30)

where the coordinate stretching functions gx and gz run differently in the different zones,
as can be seen in Figure 3.3. With the PMLs designed like this, the waves will undergo
an attenuation in the margin zones that increases gradually in the outward direction
perpendicular to the boundary of the unmodified zone D, such that their amplitudes
decay exponentially.

Elemental equations with stretched coordinates

The final step of the PML implementation is to rewrite the component MABii in (3.23)
and KABij in (3.21) using the modified equations of motion (3.29). The mass matrix

x

z

D

T

L R

B

TL TR

BL BR

zTT

zT

zB

zBB

xLL xL xR xRR

q

s

Figure 3.2: Sketch of the different zones of the computational domain. PML parts
are shaded grey. L, R, T and B stand for the left, right, top and bottom PML zones,
respectively, where always one of the coordinate stretching functions gx or gz is different
from zero. TL, TR, BL and BR stand for the top right, top left, bottom right and
bottom left PML corner zones, where both gx and gz are different from zero. D stands
for the unmodified medium, where both gx ≡ 0 and gz ≡ 0. The behaviour of gx and
gz in the respective zones is shown in Figure 3.3; the dashed blue lines indicate the cut
directions along which these functions are shown there.



3.1.2 Boundary conditions 73

q

s

0 0 zTT zT zB zBBxLL xL xR xRR

2c 2c

gx(x) gz(z)

x z

D,T,B D,L,R
TL R B

TL,BL TR,BR TL,TR BL,BR

Figure 3.3: Run of the coordinate stretching functions gx and gz along the horizontal and
vertical lines, as indicated in Figure 3.2, where the different zones of the computational
domain are defined.

components are

M̃e
ABζζ = fζ

∫
Ωe

εxεzNANB dΩ,
fx :=ω2ρ− k2

yµ
fy :=ω2ρ− k2

y (λ + 2µ)
fz :=ω2ρ− k2

yµ,
(3.31)

and the stiffness matrix components are

K̃ e
ABxx = − [(λ + 2µ)ĨAB

xx + µĨAB
zz

]
(3.32a)

K̃ e
AByy = −µ [ĨAB

xx + ĨAB
zz

]
(3.32b)

K̃ e
ABzz = − [(λ + 2µ)ĨAB

zz + µĨAB
xx

]
(3.32c)

K̃ e
ABxy = −iky

[
λĨAB

xy − µĨAB
yx

]
(3.32d)

K̃ e
AByx = −iky

[−λĨAB
yx + µĨAB

xy

]
(3.32e)

K̃ e
AByz = −iky

[−λĨAB
yz + µĨAB

zy

]
(3.32f)

K̃ e
ABzy = −iky

[
λĨAB

zy − µĨAB
yz

]
(3.32g)

K̃ e
ABxz = − [λIAB

xz + µIAB
zx

]
(3.32h)

K̃ e
ABzx = − [λIAB

zx + µIAB
xz

]
, (3.32i)

where ζ ∈ {x , y , z}. Note, that K̃ABxz and K̃ABzx remain unchanged with respect to
equation (3.24). In (3.32) I introduced the modified integral abbreviations

ĨAB
xx :=

∫
Ωe

εz

εx
∂xNA∂xNB dΩ (3.33a)

ĨAB
zz :=

∫
Ωe

εx

εz
∂zNA∂zNB dΩ (3.33b)

ĨAB
xy :=

∫
Ωe

εz∂xNANB dΩ (3.33c)

ĨAB
yx :=

∫
Ωe

εzNA∂xNB dΩ (3.33d)
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ĨAB
zy :=

∫
Ωe

εx∂zNANB dΩ (3.33e)

ĨAB
yz :=

∫
Ωe

εxNA∂zNB dΩ (3.33f)

IAB
xz :=

∫
Ωe

∂xNA∂zNB dΩ (3.33g)

IAB
zx :=

∫
Ωe

∂zNA∂xNB dΩ. (3.33h)

To proceed to the elemental version of mass and stiffness matrices, the coordinate
stretching functions gx and gz , defining the εx and εz (see equation (3.30)), need to
be written down explicitly in local coordinates ξ and η. The linear behaviour shown in
Figure 3.3 can be achieved by using

gx := Ax + Bxξ and gz := Az + Bzη (3.34)

with coefficients Aζ and Bζ (ζ ∈ {x , z}) as given in Table 3.1. Then, (3.34) and
(3.30) are inserted in equations (3.31) to (3.33). Again, all integrals are restricted to
the area Ωe of one element and, by means of (3.10), written in local coordinates. As
noted in section 3.1.1, the parameters ρ, λ and µ are constant within each element and
can be taken outside the integrals. The further steps towards the final elemental mass
matrix elements are rather lengthy and the interested reader is referred to the Appendix

L R TL TR BL BR

Ax 2 c
nL

xL−xm

∆x
2 c

nR

xm−xR

∆x
2 c

nL

xL−xm

∆x
2 c

nR

xm−xR

∆x
2 c

nL

xL−xm

∆x
2 c

nR

xm−xR

∆x

Bx − c
nL

c
nR

− c
nL

c
nR

− c
nL

c
nR

T B TL TR BL BR

Az 2 c
nT

zT−zm

∆z
2 c

nB

zm−zB

∆z
2 c

nT

zT−zm

∆z
2 c

nT

zT−zm

∆z
2 c

nB

zm−zB

∆z
2 c

nB

zm−zB

∆z

Bz − c
nT

c
nB

− c
nT

− c
nT

c
nB

c
nB

nL := xL−xLL

∆x
nR := xRR−xR

∆x
nT := zT−zTT

∆z
nB := zBB−zB

∆z

Table 3.1: Values of the coefficients for the coordinate stretching functions (3.34). nL,
nR , nT and nB are the widths of the respective PMLs given in number of elements, c
is a positive constant controlling the rate of attenuation increase relative to the width
of the PMLs, the locations of xLL, xL, xR , xRR , zTT , zT , zB and zBB and the positions
of the corresponding PML zones can be seen in Figure 3.2 and xm, zm, ∆x and ∆z are
defined in equations (3.9) and Figure 3.1. In zone D, where no coordinate stretching is
done, all coefficients are zero, in zones L and R we find Az = Bz = 0 and in zones T
and B Ax = Bx = 0.
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A, section A.2, for the complete derivation. Here, I will only state the result. The
elemental mass matrix elements for the medium with PMLs are

M̃e
ABζζ = fζ

∆x∆z

36

{
2 [1− AxAz − i(Ax + Az)]

[
4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

]
− iBx(1− iAz)

[ −2 −1 0 0
−1 −2 0 0

0 0 +2 +1
0 0 +1 +2

]
− iBz(1− iAx)

[ −2 0 −1 0
0 +2 0 +1
−1 0 −2 0

0 +1 0 +2

]
− BxBz

[
+1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 +1

]}
,

(3.35)

with fζ as given in equation (3.31), ζ ∈ {x , y , z} and coefficient matrices following the
same pattern as in equations (3.22). The elements of the stiffness sub-matrices Kζζ are
found to be

K̃ e
ABxx = − 1

12

{
∆z

∆x
(λ + 2µ)Gx

(
(1− iAz)

[
+2 +1 −2 −1
+1 +2 −1 −2
−2 −1 +2 +1
−1 −2 +1 +2

]

− iBz

[ −1 0 +1 0
0 +1 0 −1

+1 0 −1 0
0 −1 0 +1

])
+

∆x

∆z
µGz

(
(1− iAx)

[
+2 −2 +1 −1
−2 +2 −1 +1
+1 −1 +2 −2
−1 +1 −2 +2

]
− iBx

[ −1 +1 0 0
+1 −1 0 0

0 0 +1 −1
0 0 −1 +1

])}
(3.36a)

K̃ e
AByy = − µ

12

{
∆z

∆x
Gx

(
(1− iAz)

[
+2 +1 −2 −1
+1 +2 −1 −2
−2 −1 +2 +1
−1 −2 +1 +2

]
− iBz

[ −1 0 +1 0
0 +1 0 −1

+1 0 −1 0
0 −1 0 +1

])

+
∆x

∆z
Gz

(
(1− iAx)

[
+2 −2 +1 −1
−2 +2 −1 +1
+1 −1 +2 −2
−1 +1 −2 +2

]
− iBx

[ −1 +1 0 0
+1 −1 0 0

0 0 +1 −1
0 0 −1 +1

])} (3.36b)

K̃ e
ABzz = − 1

12

{
∆z

∆x
µGx

(
(1− iAz)

[
+2 +1 −2 −1
+1 +2 −1 −2
−2 −1 +2 +1
−1 −2 +1 +2

]

− iBz

[ −1 0 +1 0
0 +1 0 −1

+1 0 −1 0
0 −1 0 +1

])
+

∆x

∆z
(λ + 2µ)Gz

(
(1− iAx)

[
+2 −2 +1 −1
−2 +2 −1 +1
+1 −1 +2 −2
−1 +1 −2 +2

]
− iBx

[ −1 +1 0 0
+1 −1 0 0

0 0 +1 −1
0 0 −1 +1

])}
,

(3.36c)



76 3.1 Theory and formulae

with

Gx =

{
2 in T, D and B

Gx
1 + iBxGx

2 else

Gz =

{
2 in L, D and R

Gz
1 + iBzGz

2 else

(3.37)

and

Gζ1 =
1

Bζ

(
arctan (Aζ + Bζ)− arctan (Aζ − Bζ)

)
Gζ2 =

1

2B2
ζ

ln

(
(Aζ + Bζ)

2 + 1

(Aζ − Bζ)2 + 1

)
.

(3.38)

The remaining elements are

K̃ e
ABxy = −iky

∆z

12

{
(1− iAz)

[ −2(λ−µ) −(λ−µ) −2(λ+µ) −(λ+µ)
−(λ−µ) −2(λ−µ) −(λ+µ) −2(λ+µ)
2(λ+µ) λ+µ 2(λ−µ) λ−µ
λ+µ 2(λ+µ) λ−µ 2(λ−µ)

]

− iBz

[
λ−µ 0 λ+µ 0

0 −(λ−µ) 0 −(λ+µ)
−(λ+µ) 0 −(λ−µ) 0

0 λ+µ 0 λ−µ

]} (3.39a)

K̃ e
AByx = −iky

∆z

12

{
(1− iAz)

[
2(λ−µ) λ−µ −2(λ+µ) −(λ+µ)
λ−µ 2(λ−µ) −(λ+µ) −2(λ+µ)

2(λ+µ) λ+µ −2(λ−µ) −(λ−µ)
λ+µ 2(λ+µ) −(λ−µ) −2(λ−µ)

]

− iBz

[ −(λ−µ) 0 λ+µ 0
0 λ−µ 0 −(λ+µ)

−(λ+µ) 0 λ−µ 0
0 λ+µ 0 −(λ−µ)

]} (3.39b)

K̃ e
AByz = −iky

∆x

12

{
(1− iAx)

[
2(λ−µ) −2(λ+µ) (λ−µ) −(λ+µ)
2(λ+µ) −2(λ−µ) (λ+µ) −(λ−µ)
(λ−µ) −(λ+µ) 2(λ−µ) −2(λ+µ)
(λ+µ) −(λ−µ) 2(λ+µ) −2(λ−µ)

]

− iBx

[ −(λ−µ) λ+µ 0 0
−(λ+µ) λ−µ 0 0

0 0 λ−µ −(λ+µ)
0 0 λ+µ −(λ−µ)

]} (3.39c)

K̃ e
ABzy = −iky

∆x

12

{
(1− iAx)

[ −2(λ−µ) −2(λ+µ) −(λ−µ) −(λ+µ)
2(λ+µ) 2(λ−µ) λ+µ λ−µ
−(λ−µ) −(λ+µ) −2(λ−µ) −2(λ+µ)
λ+µ λ−µ 2(λ+µ) 2(λ−µ)

]

− iBx

[
λ−µ λ+µ 0 0
−(λ+µ) −(λ−µ) 0 0

0 0 −(λ−µ) −(λ+µ)
0 0 λ+µ λ−µ

]} (3.39d)

K̃ e
ABxz = −1

4

[
λ+µ −(λ−µ) λ−µ −(λ+µ)
λ−µ −(λ+µ) λ+µ −(λ−µ)
−(λ−µ) λ+µ −(λ+µ) λ−µ
−(λ+µ) λ−µ −(λ−µ) λ+µ

]
(3.39e)

K̃ e
ABzx = −1

4

[
λ+µ λ−µ −(λ−µ) −(λ+µ)
−(λ−µ) −(λ+µ) λ+µ λ−µ
λ−µ λ+µ −(λ+µ) −(λ−µ)
−(λ+µ) −(λ−µ) λ−µ λ+µ

]
. (3.39f)

I set Ax = Bx = Az = Bz = 0 in equations (3.35) in zone D, the actual computational
domain where no coordinate stretching is applied. This reduces them to the terms given
in (3.23) for the model without PMLs. Likewise, equations (3.36) and (3.39) reduce to
(3.24).
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3.1.3 The source term

For setting up the complete elemental matrix equation (3.15), the source term F needs
to be suitably rewritten. For a directed single force point source at the location xs =
[xs , ys , zs ]T the source terms in equation (3.1) can be written as

f̄ = s̄ (ω) δ (x− xs) f̂

= s̄ (ω) δ (x − xs) δ (y − ys) δ (z − zs) f̂,
(3.40)

where s̄ (ω) is the spectrum of the source wavelet, δ is the Dirac-delta function and
f̂ = [f̂x , f̂y , f̂z ]T is a unit vector specifying the force direction. Transforming (3.40) to the
ω–x–ky–z-domain (see equation (A.2)) yields

¯̄f =
1√
2π

s̄ (ω) δ(x − xs)δ(z − zs)e−ikyys f̂ (3.41)

and assuming the source to be located in the x–z-plane, that is ys ≡ 0, results in

¯̄f =
1√
2π

s̄ (ω) δ(x − xs)δ(z − zs) f̂. (3.42)

The premise ys ≡ 0 is implicit for the 2D case (ky ≡ 0), and for the 2.5D calculations
it does not impose a serious problem, since the distance between source and receiver
perpendicular to the x–z-plane can be accounted for during the inverse transform of the
solution U to ω–x–y–z-domain. This will be discussed in more detail in chapter 4.

The final step towards a discretised formulation of Fe is to approximate ¯̄f using the
shape functions given in equation (3.11) as indicated in (3.13):

F e
Aζ :=

∫
ωe

NA
¯̄fζ dΩ

=
1√
2π

s̄ (ω) f̂ζ

∫
Ωe

NAδ(x − xs)δ(z − zs) dΩ

=
1√
2π

s̄ (ω) f̂ζδAS , A, S ∈ {I , J , K , L}.

(3.43)

This restricts possible source locations to the element nodes, implying xs ∈ {xI , xJ , xK , xL}.
For an element containing no source one finds Fe ≡ 0.

It is important to note that (3.43) is mathematically not exact. What would be

desired is a projection of ¯̄f in equation (3.42) onto the subspace spanned by the shape
functions. Since the product of Delta functions δ(x−xs)δ(z− zs) that reflects the point

source character of ¯̄f is not contained in this subspace, (3.43) replaces the Delta shaped
source function by a finite element shape function. Thus, replacing (3.40) by

f̄ = s̄ (ω) δ(y − ys)NS (x , z) f̂, (3.44)

would yield the same result for F e
Aζ . Thus, the resulting source term is not exactly a

point source, but the best approximation for a point source that can be achieved using
the shape functions (3.11).
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3.1.4 The global system matrix

This last section of the technical description of the theory behind the implementation
of the finite element solver is concerned with the global system matrix and with its
symmetries for certain types of given models. How to assemble a FEM system matrix
is well documented in many textbooks (eg. Brenner and Scott, 2008), but since it is,
in my opinion, the most complicated part of the implementation, I have described the
procedure in more detail in Appendix B.

The global matrix equation

The complete global system matrix S is the combination of mass matrix and stiffness
matrix into

S :=

Sxx Sxz Sxy

Szx Szz Szy

Syx Syz Syy

 =

Mxx 0 0
0 Mzz 0
0 0 Myy

+

Kxx Kxz Kxy

Kzx Kzz Kzy

Kyx Kyz Kyy

 , (3.45)

which implies the definition of corresponding elemental matrices in component notation
as

Se
ABζζ = Me

ABζζ + K e
ABζζ

Se
ABζυ = K e

ABζυ

ζ, υ ∈ {x , y , z}. (3.46)

The global version of the elemental FEM matrix equation (3.15) can then be written

SU + F = 0. (3.47)

A model consisting of ne = ne
x · ne

z elements, where ne
x and ne

z are the number of
elements in the horizontal and vertical directions, respectively, contains n = nx ·nz nodes.
Here nx = ne

x + 1 and nz = ne
z + 1 are the number of nodes in the horizontal and vertical

directions. The system matrix for this model is of size 3n × 3n and can be divided
into nine sub-matrices of size n × n, as indicated in equation (3.45). An analogous
segmentation can be applied to the global solution vector and the global source vector,
viz.

U =

Ux

Uz

Uy

 and F =

Fx

Fz

Fy

 , (3.48)

introduced in equation 3.47, which are both of length 3n. The quantities Uζ (ζ ∈
{x , y , z}) are the projections of the exact continuous solution components ¯̄uζ ∈ U onto
the finite subspace UN ⊂ U via the projection (3.6). The global shape functions Ni in
(3.6) are the same functions as the local ones given in (3.11), but defined in the global
coordinate system. The index i runs through all grid nodes in column major order as
shown in Figure B.1 for the example of a FEM grid of three by three elements. Thus,
the first entry of U (U1x) is the x-component of the solution at the upper left corner
node of the grid and the last entry (Uny ) is the y -component at the lower right corner
node.
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System matrix symmetries

A close look at the equations for the elemental matrix entries given in (3.35), (3.36)
and (3.39) and their relative locations in the global matrix S reveals that in the most
general case this matrix is only of structural symmetry and can be written as a sum of
a symmetric and an antisymmetric matrix, as suggested in Figure 3.4.

For solving equation (3.47) I use PARDISO, a state-of-the-art direct linear sparse
matrix solver routine (Schenk and Gärtner, 2004, 2006). With a direct solver it is possible
to solve for multiple right hand sides, that is, multiple source vectors F. PARDISO
efficiently exploits the structural symmetry of S. If ky = 0, then Sxy , Syx , Szy and Syz

are zero and the matrix becomes symmetric. Then, only the upper triangular matrix
has to be assembled. The solution process becomes faster and more memory efficient
compared with a structurally symmetric system matrix.

3.2 Assessment of accuracy and efficiency for the 2D
problem

After the technical part on the theory of the FEM forward solver and some of its im-
plementation details in section 3.1, I will now focus on the accuracy and efficiency of
the algorithm. First, I will compare results from my FEMFd algorithm with an analytic
solution using very conservative settings for the PML boundaries. Then, I investigate to
what extent the width of the PML boundary layers can be reduced, such that still ac-
ceptable results can be obtained. Finally, I will compare results of my FEMFd algorithm
with an FDTd solution. On the basis of this comparison, I will also discuss the general
efficiency of frequency- and time-domain modelling.

n

n

n

n n n

Sxx

Szx

Syx

Sxz

Szz

Syz

Sxy

Szy

Syy

Sxx 0

Szx 0

Sxz 0

Szz 0

Syy 0Syx0 Syz0

Sxy0

Szy0= +

symmetric antisymmetric

Figure 3.4: Zonation, size and symmetries of the complete system matrix. When n is
the total number of nodes in the model, the matrix is of size 3n× 3n, containing 9 sub-
matrices of size n× n, one for each possible combination of solution vector components
x , y and z . The sub-matrices marked green would make up a symmetric matrix when
the ones marked in blue would be set to zero. The sub-matrices marked in blue would
generate an antisymmetric matrix, when the green parts would be set to zero.
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3.2.1 Accuracy: Comparison with an analytic solution

For testing the accuracy of my FEMFd algorithm, I compare my results with an analytic
solution for a homogeneous full space model given in Appendix C.2.1. the model is of
dimension 40 m×40 m with PML-layers of width nPML = 200 elements, and the medium
parameters are the same as for the model FH introduced in section 2.1.1 (Table 2.1).
As listed in Table 3.2, I have considered three frequencies f and four different grid steps
dh. An important quantity for the numerical accuracy is the number of grid steps per
minimum wavelength N = λmin

dh
. The corresponding values are listed in Table 3.2.

Furthermore, the source and receiver directionality need to be taken into account.
I have analysed the xx configuration (x-directed source and x-directed receiver) along
profiles through the source position (in the centre of the model) that are parallel, per-
pendicular and at an angle of 45° to the source direction. Due to the symmetry of the
problem, corresponding zz configurations, rotated by 90°, lead to equivalent results and
are not shown. For the xz configuration, only profiles at an angle of 45° are analysed
(the solution values along profiles parallel and perpendicular to the source direction are
equal to zero).

Results for N = 16 are displayed in Figure 3.5. The left panels show the relative
model sizes, in units of minimum wavelengths λS , for the three different frequencies
together with the cut directions. In the middle panels, the analytic and numerically
computed Green’s functions for the three frequencies are displayed. The right panels
show the relative errors (normalised by the maximum of the corresponding imaginary
part).

The horizontal axis of the wavefield solution and error plots, which represent the
distance to the source, are also displayed in minimum wavelengths units. It is interesting
to note that, when plotted like this, not only are the analytic solutions equivalent for the
different frequencies, but the error curves for all frequencies also lie almost exactly on top
of each other. This indicates that only the N value is relevant for the numerical accuracy.
The relative errors are quite different for the four cases displayed in Figures 3.5a to 3.5d.
The xx configuration results for the profile in the direction of the source (Figure 3.5a)
have the smallest relative errors (less than 1%), and for the xz configuration (Figure
3.5d) errors of up to 13% are observed.

With the exception of the xx configuration in Figure 3.5a, all relative errors tend to
increase with increasing distance. This is detailed in Figure 3.6, which shows enlarged

f [Hz] λS [m] 40 m/λS N = λS/dh

125 8 5 16 32 64 128
250 4 10 8 16 32 64
500 2 20 4 8 16 32

0.5 0.25 0.125 0.0625 dh [m]

Table 3.2: Minimum wavelengths λS , model edge length (40 m) in units of λS , and
number of grid steps per minimum wavelength N = λS

dh
, for the three frequencies f and

four grid steps dh used to test the accuracy of the FEM solution against the analytic
solution.
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Figure 3.5: Different cuts through the analytic solution given in Appendix section C.2.1.
The boxes to the left show sketches of the relative sizes of the solutions for the three
different frequencies in units of λS , coloured according to the legend, together with the
cut, along which the solution is taken for the plot. The middle panels show the FEM
solutions as a function distance to the source along the cuts (in units of λS) for a value
of N = 16, plotted (as dots) together with the corresponding analytic solution as solid
lines, and in the panels on the right hand side the relative error of the FEM solution is
shown. Again the maximum of the imaginary part is taken as a reference. (a) shows real
(top) and imaginary (bottom) part of a cut through solution xx in source direction, (b)
shows real (top) and imaginary (bottom) part of a cut through solution xx perpendicular
to the source direction, (c) shows real (top) and imaginary (bottom) part of a diagonal
cut through solution xx and (d) shows real (top) and imaginary (bottom) part of a
diagonal cut through solution xz . The amplitude of the FEM solution is correct, but in
cases (b) to (d) there is an increasing phase shift with respect to the analytic solution,
such that the error values grow with the distance to the source. (See also Figure 3.6).



82 3.2 Assessment of accuracy and efficiency for the 2D problem

versions of the middle panels of Figures 3.5a and 3.5d. The error is governed by an
increasing stretch of the numerical solution, which can be quantified with a distance
dependent lag of the analytic and numerically computed curves (Figure 3.6c). This
effect is most pronounced for the xz case and negligible for the xx case along the source
direction. The small numerical errors for the xx case along the source direction can be
explained by the fact that no S-wave energy is radiated in this direction. Therefore, the
minimum wavelength for this configuration rather corresponds to λP , which is almost
twice as large as λS .

The accuracy of the FEMFd solution as a function of N is investigated in Figure 3.7.
Here, only the two extreme cases, namely the xx case along a cut in the source direction
and the zx case along a cut in the diagonal direction, are displayed. As expected, the
errors decrease with increasing N . To achieve an accuracy of 5%, less than 8 grid points
per minimum wavelength would be required for the xx case. This corresponds to a
commonly employed rule of thumb that about 10 grid points per minimum wavelength
are required (e.g. Marfurt, 1984). By contrast, 32 grid points per wavelength would be
required to achieve a similar accuracy for the zx case.
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Figure 3.6: Zoom onto the imaginary parts of the solutions for 500 Hz for the cases
shown in Figure 3.5 exhibiting the best (xx) and the worst (xz) fit. (a) corresponds to
3.5a and shows the best fit, no phase shift between the analytic and FEM solutions is
observed. (b) corresponds to 3.5d and shows the worst fit, due to the phase lag between
the analytic and FEM solutions that increases with source distance. (c) shows the phase
lag between the analytic and FEM solutions shown in (a) and (b) computed by cross-
correlation using a sliding window. It is zero for the ‘well behaved’ case (a) and grows
with distance to the source for case (b).
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Figure 3.7: Relative errors of the FEM solution with respect to the analytic solution. for
different combinations of source type and displacement field component and different
parts of the solution. diagonal stands for the maximum error along the diagonal, vertical
for the maximum error along a vertical cut through the source position and horizontal
for the maximum error along a horizontal cut through the source position. See Table 2.2
for the definition of the abbreviations denoting the different combinations of source type
and displacement field component. The errors are relative to the absolute maximum of
the imaginary part of the respective analytic solution for the same reason as described
in section 3.2.2.

3.2.2 PML validation

For the calculations in the previous subsection, I used a very large number of elements
(nPML = 200) to define the PMLs surrounding the model. This high value was chosen
to make sure that any difference with the analytic solution is due to grid dispersion
and not caused by spurious reflections from the artificial model boundaries. Using such
wide PMLs is very inefficient. Therefore, I have investigated by how much nPML can be
reduced and still sufficiently suppress the spurious reflections. Simulations for different
values of the parameter c , introduced in Table 3.1, showed no strong influence on the
PML performance. I have chosen a value of c = 10.

To estimate a suitable value of nPML, I perform test calculations for three different
elastic isotropic models, using PML widths of nPML = 10, 30, 50, 100, 150 and 200
elements. First, I consider the homogeneous full space model already employed in the
previous section (introduced as FH in section 2.1.1). Then, to investigate the PML
performance in the presence of a free surface, I look at a homogeneous half space model
with equivalent elastic parameters (model HH defined in section 2.1.1). Finally, I check
the performance of the PMLs with a gradient model including a free surface (model HG
in 2.1.1).
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I compute both the horizontal and vertical components of the displacement fields
resulting from horizontally and vertically directed single force sources for the three fre-
quencies f = 125 Hz, 250 Hz and 500 Hz. For each model, this is performed for two
different source locations, one as far away as possible from all the artificial boundaries,
the other one placed near to the PMLs (Figure 3.8). This setup allows assessment of
whether the distance of the source to the boundary has any influence on PML perfor-
mance.

PML performance in the absence of a free surface

The FEM model is discretised with finite elements of edge length 10 cm. The resulting
values of N , listed in Table 3.3, assure suitable modelling accuracy. The Table also gives
the widths of the PMLs (dPML) in metres and in units of wavelengths.

Figures 3.9 and 3.10 show plots of the natural logarithm of the absolute value of the
solution amplitudes versus the horizontal coordinate (x , see Figure 3.8a). for the centre
source and the source near the boundary. Horizontal profiles through the respective
source positions are displayed. The curves start 6 m to the left of the artificial boundary
(denoted by xR , see Figure 3.2) and end 3 m to the right of it. For each configuration
and frequency shown, the values are normalised to the amplitude of the solution for
nPML = 200 at xR .

The results for the centre source (Figure 3.9) show, that PML widths of nPML > 30
are sufficient in this case. For the lowest frequency (Figure 3.9a), the least spurious
reflections are observed. The amount of noise due to the model truncation increases
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0 20 36 40 0 20 36 40
x[m] x[m]
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F F

(a) (b)

Figure 3.8: Experimental setup for testing the performance of the PMLs. (a) shows a
homogeneous model with PMLs as indicated by the areas shaded in grey. The model
parameters are identical to model FH introduced in section 2.1.1. (b) shows the geometry
of a free surface model and PMLs to the left, right and at the bottom of the model.
This model geometry is used for a homogeneous half space model with elastic parameters
equivalent to that of model HH and a gradient model with elastic parameters as those
of model HG, both introduced in section 2.1.1. The red stars denote source locations.
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Figure 3.9: PML performance assessment for a source in the centre of a homogeneous
full space model (model FH in section 2.1.1). FEM solutions for different PML widths
and frequencies of (a) 125 Hz, (b) 250 Hz and (c) 500 Hz. Shown is a horizontal profile
through the source position for the centre source shown in Figure 3.8a, starting at
x = xR − 6 m and ending at x = xR + 3 m, where xR is the horizontal position of the
boundary to the PMLs at the right model edge (see Figure 3.2). Since the solutions for
all other combinations of source/receiver components are zero along this profile, I only
show configurations xx (left) and zz (right).
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Figure 3.10: PML performance assessment for a source in the lower right corner of a
homogeneous full space model (model FH in section 2.1.1). FEM solutions for different
PML widths and frequencies of (a) 125 Hz, (b) 250 Hz and (c) 500 Hz. Elastic parameters
are those of model FH in section 2.1.1. Shown is a horizontal profile through the source
position for the source in the lower right corner (see Figure 3.8a) starting at x = xR−6 m
and ending at x = xR + 3 m, where xR is the horizontal position of the boundary to the
PMLs at the right model edge (see Figure 3.2). Since all other configurations are zero
along this profile, I only show configurations xx (left) and zz (right).



3.2.2 PML validation 87

nPML 10 30 50 100 150 200

dPML [m] 1 3 5 10 15 20 f [Hz] N

dPML/λS

0.125 0.375 0.625 1.250 1.875 2.500 125 80
0.250 0.750 1.250 2.500 3.750 5.000 250 40
0.500 1.500 2.500 5.000 7.500 10.000 500 20

dPML/λR

0.134 0.402 0.670 1.340 2.011 2.681 125 75
0.268 0.804 1.340 2.681 4.021 5.362 250 37
0.536 1.609 2.681 5.362 8.043 0.724 500 19

Table 3.3: PML widths expressed in terms of number of elements (nPML), metres (dPML)
and in minimum propagation wavelengths (corresponding to the shear or Rayleigh wave)
for the three different frequencies used for testing the performance of the PMLs in case
of a homogeneous unbounded model and a homogeneous half space model with model
parameters of models FH and HH (see section 2.1.1). Also listed are the number of
grid steps per minimal wavelength N = λmin

dh
, where λmin = λS for the full space and

λmin = λR for the half space.

with increasing frequency. Thus it can be concluded that larger values of nPML have to
be chosen for smaller numbers N .

The spurious reflections observed in the solutions for the peripheral source (Figure
3.10) are similar in amplitude and shape. Note the different scale with respect to Figure
3.9. The only remarkable difference from the results for the centre source is the large
error for nPML = 10, configuration xx and a frequency of 125 Hz. Here, the source is
placed only half a wavelength away from the boundary, and it seems that the near-field
phases are entering the PMLs, making a larger number of elements to form the PML.

PML performance in the presence of a free surface

To investigate the PML performance in the presence of a free surface, I use two different
models, both of size 40 m × 30 m. The two sources are placed on the free surface, the
first one horizontally centred and the second one placed near the boundary to the PML
on the right side of the model, as shown in Figure 3.8b. For the homogeneous half
space I again use a FEM grid step of dh = 10 cm, and the gradient model is discretised
into finite elements of edge length 5 cm. The resulting values of N , given in Table 3.3
for the homogeneous case and in Table 3.4 for the gradient model, guarantee sufficient
modelling accuracy.

For the homogeneous model, Figures 3.11 and 3.12 show similar amounts of spurious
reflections for the different values of nPML as were already observed for the homogeneous
full space in Figures 3.9 and 3.10. But in the case of the simulations for the longest
wavelength, the PMLs show a notably worse performance. For the less problematic
source position in the centre of the free surface, Figure 3.11a shows a similar failure
for the xx configuration and nPML = 10, as already observed in Figure 3.10a for the
homogeneous full space. Results become even worse when the source is placed near the
absorbing boundary. Here (Figure 3.12a) the PMLs fail completely for all configurations
in the case nPML = 10. I again attribute this to near-field phases entering the PML
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Figure 3.11: PML performance assessment for a source placed in the centre of the free
surface of a homogeneous half space (model HH in section 2.1.1). FEM solutions for
different PML widths and frequencies of (a) 125 Hz, (b) 250 Hz and (c) 500 Hz. Shown is
a horizontal profile along the free surface through the solution for the source at x = 20 m
(see Figure 3.8b) starting at x = xR − 6 m and ending at x = xR + 3 m, where xR is the
horizontal position of the boundary to the PMLs at the right model edge (see Figure
3.2). Left to right, I show configurations xx , xz , zx and zz .
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Figure 3.12: PML performance assessment for a source placed near the artificial boundary
of the free surface of a homogeneous half space (model HH in section 2.1.1). FEM
solutions for different PML widths and frequencies of (a) 125 Hz, (b) 250 Hz and (c)
500 Hz. Shown is a horizontal profile along the free surface through the solution for
the source at x = 36 m (see Figure 3.8b) starting at x = xR − 6 m and ending at
x = xR + 3 m, where xR is the horizontal position of the boundary to the PMLs at the
right model edge (see Figure 3.2). Left to right, I show configurations xx , xz , zx and
zz .
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nPML 10 30 50 100 150 200

dPML [m] 0.5 1.5 2.5 5 7.5 10 f [Hz] N

dPML/λR

0.110 0.331 0.552 1.105 1.657 2.210 125 96
0.221 0.663 1.105 2.210 3.314 4.419 250 48
0.442 1.326 2.210 4.419 6.629 8.838 500 24

Table 3.4: PML widths expressed in terms of number of elements (nPML), metres (dPML)
and in minimum Rayleigh wave wavelengths (approximated by the wavelength computed
for the Rayleigh wave velocity of a homogeneous half space with vP and vS equivalent
to the minimal values in the gradient model) for the three different frequencies used for
testing the performance of the PMLs in the case of a gradient model with a free surface
and model parameters as model HG (see section 2.1.1). Also listed is the number of grid
steps per minimum wavelength used.

zone. These evanescent wave types cannot be attenuated properly, as will be discussed
in more detail in section 4.4.

As can be seen in Figures 3.13 and 3.14, adding heterogeneity in the form of a vertical
gradient to the model does not deteriorate the PML performance. Since the smallest
distance of the source to the PMLs is approximately one wavelength (for f = 125 Hz),
the problem of near-field phases does not appear as pronounced as in the case of the
homogeneous model, where the shortest distance was only half a wavelength. Only for
configuration xx and the source placed near the PML boundary (Figure 3.14a) is this
effect observed.

Conclusions on the PML test

The tests in this section have shown that the PMLs as implemented in the FEM code
work as expected for 2D forward modelling.

Only if the source is placed at a distance of less than a wavelength away from the
boundary to the PMLs and if the width of the PMLs is relatively thin, the performance
is unsatisfactory. It is worst if the source direction points towards the near boundary
and the field component perpendicular to this boundary is recorded. This effect is more
pronounced for models that include a free surface, but it is not observed for PML widths
of nPML > 30. Thus I expect PML widths of nPML = 30 to sufficiently attenuate spurious
reflections in the 2D case.

3.2.3 Comparison with an established FDTd modelling code

Besides comparing my FEMFd code with an analytic solution, it is equally important to
check its reliability under a more realistic scenario, for which no analytic solution exists.
Therefore, I have performed a comparison with the well established FDTd code already
introduced in chapter 2. Seismograms were computed for the vertical gradient model
HG, already employed in section 2.1.1.

The setup of the modelling test is shown in Figure 3.15. Note that the source and the
topmost row of receivers are not placed directly at the free surface but one FD grid step
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Figure 3.13: PML performance assessment for a source placed in the centre of the free
surface of a gradient (model HG in section 2.1.1). FEM solutions for different PML
widths and frequencies of (a) 125 Hz, (b) 250 Hz and (c) 500 Hz. Shown is the solution
along a horizontal profile along the free surface for the source at x = 20 m (see Figure
3.8b) starting at x = xR − 6 m and ending at x = xR + 3 m, where xR is the horizontal
position of the boundary to the PMLs at the right model edge (see Figure 3.2). Left to
right, I show configurations xx , xz , zx and zz .
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Figure 3.14: PML performance assessment for a source placed near the boundary between
physical medium and PMLs at the free surface of a gradient model (model HG in section
2.1.1). FEM solutions for different PML widths and frequencies of (a) 125 Hz, (b) 250 Hz
and (c) 500 Hz. Shown is the solution along a horizontal profile along the free surface
for the source at x = 36 m (see Figure 3.8b) starting at x = xR − 6 m and ending at
x = xR + 3 m, where xR is the horizontal position of the boundary to the PMLs at the
right model edge (see Figure 3.2). Left to right, I show configurations xx , xz , zx and
zz .
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Figure 3.15: Experimental setup for the comparisons of my FEMFd algorithm with the
FDTd code introduced in chapter 2. Elastic model parameters are the same as for model
HG introduced in section 2.1.1.

dFD = 0.1 m below it. Since the FD algorithm computes the wave field on a staggered
grid (SSG) (see Bohlen and Saenger, 2006, Figure 1a), I have to use half the FD grid
step as the size for the finite element computations, that is dFEM = dFD

2
= 0.05 m, to be

able to place the source and receivers at identical positions. In the SSG implementation,
the vertically directed force type source force is placed half a grid step to the right and
half a grid step below the prescribed source position and the vertical component of the
wave field is stored at the same staggered position relative to the receiver coordinates, as
it is illustrated in Figure 3.16. The horizontally directed force source and the horizontal
compnent of the wavefield are referred to the actual grid positions as shown.

As a source wavelet I use the Ricker type wavelet, as introduced in section 2.1.1, but
here with a centre frequency of 300 Hz. Therefore, only frequencies up to 1000 Hz have

x

z true source location true receiver location

F H
fx

fz
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vz

dFD

dFD/2

dFD/2

dFD

dFD/2

dFD/2

Figure 3.16: Actual positions of the vertical and horizontal source forces and receivers
in the SSG implemented in the FD code, shown for a grid step of dFD. The red star
marks the source position, the red arrows the actual positions of horizontal single force
source fx and vertical single force source fz . The blue triangle marks the desired receiver
position, the blue arrows denote the points at which horizontal field component vx and
the vertical field component vz really are computed.
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to be computed with my FEM code.

With the FD code I compute seismograms of 0.1 s length, such that I need to sample
the frequency space in steps of df = 1

0.1
1
s

= 10 Hz, resulting in a total number of 100
FEM forward calculations, i.e. 100 frequencies. Finally, the displacements computed by
my FEM code had to be converted to velocities (multiplication by i2πf ) and inversely
Fourier transformed for comparing them with the FDTd results.

The resulting traces, plotted together with the FD seismogram traces, are shown in
Figure 3.17. The agreement between the two solutions is excellent and confirms the
reliability of my code.
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Figure 3.17: Seismograms computed with the FDTd code plotted on top of the solution
computed with the FEMFd code. The source location and the receiver positions are
shown in Figure 3.15, where the receivers are numbered correspondingly. All FEMFd
seismogram traces are multiplied by a constant factor (accounting for the different source
amplitudes due to different implementation) to match the amplitudes of the FDTd
seismogram traces.
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3.2.4 Efficiency: assessment of time-domain and frequency-domain
modelling benefits

In the previous section I have demonstrated that seismograms computed with my FEMFd
algorithm and the FDTd program of Bohlen (2002) are virtually identical. It is also in-
teresting to compare the computational resources required by the two quite different
approaches. In fact, time-domain vs. frequency-domain seismic modelling is an exten-
sively discussed topic, which makes such a comparison even more interesting. I compare
the computation times and the memory consumptions of the two codes by means of the
modelling task shown in Figure 3.15. As described below, the modelling parameters were
slightly changed for a fair comparison of the usage of the computational resources.

Modelling parameters The elastic parameters of the model are discretised for both
the FDTd and the FEMFd computations with a grid step of 0.1 m. This dictates a time
step for the FDTd computations of dt ≤ 6

7
dh√

2·max(vp)
= 24.24µs to fulfil the stability

criterion for FDTd modelling (see section 2.1.1). I use dt = 20µs and compute a total
of nt = 3250 time steps to get a seismogram length of 0.065 s (see Figure 3.17).

To compute seismograms of length 0.065 s with the FEMFd code, the frequency
space would have to be sampled in steps of df ≤ 1

0.065
1
s

= 15.385 Hz. The source
spectrum has significant amplitudes up to roughly 1000 Hz. Therefore, 66 frequencies
would be required to compute unaliased seismograms.

Results In the case of the FD code, I have to perform one forward calculation for
each source position and source type, leading to a total computation time for ns sources
of tFD = nt · ns · ts , where nt is the number of time steps and ts the time required to
compute a single time step (approx. 0.06s). The overall computation time tFD is shown
with the red line in Figure 3.18a.

Using the direct matrix solver PARDISO (Schenk and Gärtner, 2004, 2006), for
the FEMFd computations, it is possible to solve for several source positions at once.
Computations for one to fifty sources and one to sixty-six frequencies were carried out.
The results are indicated by the green, orange, cyan and blue lines in Figure 3.18a.

The total computation time of the FEMFd code is found to be tFEM = Af + Pf (ns)+
(nf−1) (Ao + Po(ns)), where Af is the time spent for assembling the system matrix when
computing for the first frequency, Pf (ns) is the time PARDISO needs to solve for ns right
hand sides in the case of the first frequency in the program sequence; Ao and Po(ns) are
the assembly and solving times for every following frequency in the program run. Since
the necessary memory is allocated during the computations for the first frequency, Ao

and Po(ns) are smaller then Af and Pf (ns).
The curve for one frequency is given as a reference. Modelling three or five frequen-

cies are possible scenarios for a typical waveform inversion in the frequency domain, as
suggested in section 2.4.2 (see Figure 2.32).

Each FDTd forward calculation requires the same amount of memory (14.96 MB).
This is indicated by the red line in Figure 3.18b.

The memory consumption of the FEMFd program can be divided into three parts
as shown in Figure 3.18b. When solving for one source only, the largest amount of
memory is used by the solution process. For the model under consideration roughly one
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Figure 3.18: Computation times (a) and memory usage (b) of the FEMFd and the FDTd
code for computing the response of the model shown in Figure 3.15 The times shown
for the FDTd code (red line a) correspond to seismogram lengths of 0.065 s computed
with a time step of dt = 20µs. The times shown for the FEMFd code (green, orange,
cyan and blue lines in a) correspond to solutions for one, three, five and 66 different
frequencies , respectively. 66 frequencies would be necessary to sample the frequency
space, such that the inverse Fourier transform results in unaliased seismograms in the
time domain. The memory usage for the FEMFd solver (the blue line in b) is independent
of the number of frequencies.

GB is needed. Adding more source positions does not change this value significantly.
Additionally, some memory is taken up by the system matrix, which is also independent
of the number of sources (111 MB). The only part of the memory requirement that grows
with the number of sources is the space needed to store the solution vectors. For ns = 1
the solution vector only needs about 18 MB of memory but for ns = 50 this value rises
to about 917 MB, as indicated by the wedge-shaped uppermost blue area in 3.18b.

Figure 3.18 shows nicely that FEMFd modelling in the frequency domain offers ex-
tremely short computation times for only a few frequencies and a large number of sources.
This is a typical scenario in seismic waveform inversions. Interestingly, even for com-
puting complete seismograms the FEMFd algorithm outperforms the FDTd code, when
more than ns & 15 sources need to be considered!

The drawback of the FEMFd approach, though, is its excessive memory requirement
that is already about eighty times higher then that of the FD code in the case of ns = 1
and for ns = 50 it grows to about 140 times that of the FD code. For smaller-scale
problems this does not impose a serious problem, but it currently prohibits elastic 3D
modelling and inversions to be carried out in the frequency domain.

Large-scale seismic modelling is nowadays performed mostly on computer clusters.
FDTd modelling for several sources can be distributed very efficiently on several nodes,
since the computations for the different sources are independent of each other. A similarly
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efficient distribution can be also achieved for FEMFd simulations. Here, the computa-
tions of the individual frequencies are distributed on the cluster.

3.3 Conclusions

In the first part of this chapter, I gave an overview of the implementation details of the
frequency-domain finite element (FEMFd) code I wrote and the theory that underlies it,
concentrating on a two-dimensional version. The equations and explanations are given
with the aim of enabling anyone to retrace the various considerations and reprogramme
the code.

In the second part of this chapter, I then showed that the code based on all these
theoretical considerations actually works as desired.

The PMLs, used for truncating the infinite models to the actual computational do-
main, only work properly if their width exceeds 30 elements and the sources are placed
more than one dominant wavelength away from the boundary. For certain source/receiver
directivity combinations, the PML width can be reduced.

Using the analytic solution for an unbounded elastic isotropic medium, I showed,
that to accurately model the amplitudes of the wave fields only about 16 elements per
minimum wavelength are needed. However, to match the phase of the analytic solution,
within an acceptable error limit of one percent, at a distance of up to 13 wavelengths
from the source, one must use an astonishing number of 64 elements per minimum
wavelength. I found it especially hard to model combinations of vertically directed source
and horizontal component of the displacement field, and similarly the equivalent problem
of modelling the vertical component of the displacement field for a horizontally directed
source.

I have also shown the equivalence of my FEMFd code to the well established time
domain finite difference (FDTd) code I used for the modelling reported in chapter 2,
and evaluated their respective areas of use. Based on the modelling comparisons that
I conducted, I can state that the benefits of FDTd modelling lie in its efficient use of
computer memory, whereas the FEMFd method provides shorter computation times and
offers the possibility to solve for several source positions at once, but at the expense of
a relatively high memory usage. Thus, FDTd is best used for computing seismogram
traces for a few different source locations and types for large models, whereas FEMFd
has to be favoured, if one only needs the solution for a few frequencies but for a larger
number of sources, as is the case when performing seismic inversion in the frequency
domain.
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Chapter 4

2.5D forward modelling

4.1 Introduction

Seismic sources in practise can usually be approximated by a point source. Consequently,
the data recorded exhibit a 3D geometrical spreading. A 2D forward solver, such as my
finite element code, described in section 3.2, computes solutions for an infinite line source
perpendicular to the x-z-plane that exhibit a 2D geometrical spreading.

If such 2D forward modelling is employed in an attempt to invert real data, a 3D-
to-2D transformation has to be performed (e.g. Amundsen and Reitan, 1994). Using
such a transform would restrict the inversion to those parts of the data that are well
matched by the transformed 2D synthetics (for each arrival a different 3D-to-2D filter
would have to be employed). For near-surface seismic data, such an approach would be
not applicable, since the different arrivals typically overlap.

A possible alternative could involve full 3D modelling, perhaps with an elastic FEM
algorithm. A simple regular FEM grid would require a system of equations of dimension
(3nx ·ny ·nz)×(3nx ·ny ·nz) to be solved, where nx , ny and nz are the number of nodes in
the three spatial directions. Even using the best state-of-the-art computer technologies
this would be challenging or even impossible. A possible alternative could be to employ
3D FDTd algorithm, but considering that a typical waveform inversion problem includes
many source and receiver positions, makes this alternative also impractical.

A compromise between the inappropriate 2D modelling and the prohibitively expensive
3D modelling could be a 2.5D approach, where seismic waves, excited by a (3D) point
source propagate through a medium, in which elastic parameters vary only in two spatial
directions.

Most treatments in the literature deal only with the 2.5D acoustic case. Only a
handful of papers tackle true 2.5D elastic modelling. A time-domain pseudo spectral
formulation is given by Furumura and Takenaka (1996). Yang and Hung (2001) gave a
hybrid finite element/infinite element solution for viscoelastic media, while Sinclair et al.
(2007) solved the 2.5D anisotropic problem in the frequency domain using a spectral
element approach. Boundary integral equation 2.5D modelling for elastic isotropic media
is described by Takenaka et al. (1996) and (Fujiwara, 1997).

As one of the first considering the 2.5D acoustic case, Bleistein (1986) proposed
an operator transforming 2D solutions into 2.5D solutions based on ray tracing. Liner
(1991, 1995) heuristically derives 2.5D time domain and frequency domain acoustic



4.1 Introduction 99

wave equations for constant density by adding additional terms to the 2D acoustic wave
equation. Williamson and Pratt (1995) propose an approximate 2.5D acoustic wave
equation by integrating an 2.5D-to-2D filter in the acoustic 2D wave equation. The
approaches by Bleistein (1986), Liner (1991, 1995) and Williamson and Pratt (1995) are
computationally relatively inexpensive, but involve the same problematic approximations
as the 3D-to-2D transforms by Amundsen and Reitan (1994) and only provide accurate
results for more or less homogeneous media.

A more generally valid acoustic 2.5D wave equation is derived by Song and Williamson
(1995) and further developed by Cao and Greenhalgh (1997, 1998) and Zhou and Green-
halgh (1998c). If the elastic properties are assumed to be constant along the y -axis,
the 2.5D wave equation can be obtained by Fourier transforming the governing differ-
ential equations from the ω–x–y–z-domain to the ω–x–ky–z-domain, where ky is the
y -coordinate wavenumber. Such a transformation was applied in section 3.1.1 (equation
(3.2)).

The Fourier transformation technique results in a 2D problem that requires a much
smaller (3nx · nz)× (3nx · nz) system of equations to be solved for a suitable selection of
ky values. Finally, the results need to be inversely transformed to the ω–x–y–z-domain.

The acoustic wave equation in the ω–x–ky–z-domain (see Zhou and Greenhalgh,
2006, equation (1), adapted to the Fourier transform definition (A.2)) is

∇2G (x; xs) + (k2
y − k2

P)G (x; xs) = − 1√
2π
δ (x − xs) δ (z − zs) , (4.1)

where G (x; xs) is the Green’s function for a source at xs , kP = ω/vP is the wavenumber
of a wave travelling with longitudinal wave velocity vP . and ω = 2πf is the angular
frequency.

Parts of the solution of equation 4.1 are rapidly varying with respect to ky and for ky ≡
kP the solution of equation 4.1 exhibits a pole with a highly oscillatory behaviour in its
surroundings, which may make an even sampling strategy along the ky axis problematic.
Therefore, Zhou and Greenhalgh (2006) introduce an uneven sampling strategy based
on the analytic full-space solution of the acoustic 2.5D problem. A similar treatment for
the elastic anisotropic 2.5D problem (Zhou and Greenhalgh, 2010b) will be published
soon.

The 2.5D wave equations for the elastic case are given in section 3.1.1, equation
(3.2). If the elastic parameters are assumed to be constant with respect to x and z
(which is the case within a finite element), the 2.5D equations can be rewritten as

0 = µ (k2
S − k2

y )¯̄ux +
[
(λ + 2µ)∂2

x + µ∂2
z

]
¯̄ux

+ iky (λ + µ)∂x ¯̄uy + (λ + µ)∂x∂z ¯̄uz + ¯̄fx
(4.2a)

0 = (λ + 2µ)(k2
P − k2

y )¯̄uy + µ(∂2
x + ∂2

z )¯̄uy

+ iky [µ∂x ¯̄ux + (λ + 2µ)∂z ¯̄uz ] + ¯̄fy
(4.2b)

0 = µ (k2
S − k2

y )¯̄uz +
[
(λ + 2µ)∂2

z + µ∂2
x

]
¯̄uz

+ iky (λ + µ)∂z ¯̄uy + (λ + µ)∂x∂z ¯̄ux + ¯̄fz ,
(4.2c)

where kP = ω
vP

and kS = ω
vS

are the wavenumbers corresponding to the P- and S-waves,

respectively. Due to the appearance of the terms (k2
P − k2

y ) and (k2
S − k2

y ), the solution
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of equations 4.2 includes poles at kP and kS with the same highly oscillating behaviour
as observed in the acoustic 2.5D solutions in ω–x–ky–z-domain. This requires a similar
strategy for the elastic as for the acoustic case.

In section 4.2.1 I introduce such a strategy for elastic isotropic homogeneous full-
space models. This sampling scheme is implemented in the FEMFd modelling code
introduced in the previous chapter. The proposed sampling strategy can also be adapted
to homogeneous, isotropic models with a free surface (see section 4.3), but it fails for
strongly inhomogeneous models, since the locations of the poles of the ω–x–ky–z-domain
solutions are unknown in this case. Thus, for inhomogeneous models, the only possibility
is to employ an even sampling in ky followed by an inverse discrete Fourier transform. I
show in section 4.4, that the results for an even sampling can be highly contaminated
by artifacts due to numerical instabilities in the vicinity of critical wavenumbers.

4.2 Homogeneous isotropic full space

4.2.1 Anatomy of the analytic spectra

The ky -spectra for acoustic waves in a homogeneous full-space with velocity vP have a
pole at wavenumber ky = kP = ω

vP
= 2π

λP
, where ω is the angular frequency and vP is the

P-wave velocity (Zhou and Greenhalgh, 2006). An example for such spectra is shown in
Figure 4.1.

Close to kP , the spectra oscillate, with the oscillation frequency increasing with in-
creasing source-receiver distance d . Above kP , the spectra only retain a rapidly decaying
real part that represents the evanescent fraction of the wave field. Hence, the sampling
density should increase near kP and the total number of ky sample points depends on
the maximum source-receiver distance dmax.PSfrag replacements
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Figure 4.1: Amplitude versus wavenumber ky plot for a homogeneous full space using
the acoustic approximation at source/receiver distances d of (a) 2.5λS and (b) 10λS

(vP = 1950 m/s). The model is introduced in section 4.2.1. Solutions of the elastic case
for the same source/receiver distances d are shown in Figure 4.2.
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In the elastic case, the S-wave velocity vS is generally associated with a second
critical wavenumber at ky = kS = ω

vS
= 2π

λS
and the vectorial nature of the elastic

displacement field needs to be considered, such that the scalar acoustic Green’s function
needs to be replaced by a nine-component Green’s tensor that represents the nine possible
combinations of source and receiver directions. Analytic equations for the Green’s tensor
for a homogeneous isotropic elastic unbounded domain are given in Appendix section
C.2.2. These analytic solutions can be split up into two parts, where one represents
the P-wave portion G P

ij and the other one the S-wave portion G S
ij of the solution (see

equations (C.13) and (C.14)). Separated like this, each part of the elastic ky spectra
shows a similar behaviour as the acoustic spectra, with poles or discontinuities only at
one wavenumber; at kP in the case of G P

ij and at kS in the case of G S
ij .

Due to symmetries, there are only seven independent cases, from which the solutions
of all other cases can be derived. Four characteristic cases out of these seven independent
ones are shown in Figure 4.2. The left panel of Figure 4.2 shows the four independent
source-receiver configurations and the middle and right panels show the corresponding
ky spectra. For each panel, the topmost trace is G P

ij , followed by G S
ij and then the

bottommost trace is the complete Gij . The computations are performed for medium
parameters vP = 1950 m

s
, vS = 1200 m

s
, density ρ = 1500 kg

m3 and 300 Hz signal frequency.
The source is placed at (0, 0) and the two receivers are located at distances from the
source of d = 2.5λS and d = 10λS .

Directivity of the sources results in the ky spectra being azimuthally dependent (ex-
cept for case d in Figure 4.2). Spectra for receivers placed at an azimuth of 45°, as they
are shown in Figure 4.2, exhibit all the critical features that may affect a ky sampling
strategy. The following observations can be made for each of the cases:

(a) Source direction in the x-z-plane, receiver component parallel to the source direction.

The P-part of the solution exhibits an amplitude decreasing and an oscillation fre-
quency increasing with increasing ky ; at wavenumbers greater than kP both real and
imaginary parts are zero. The S-part of the solution exhibits an increasing amplitude
towards kS , where it ends in a pole; above kS , the real part decays rapidly and the
imaginary part is zero. The S-spectra are very similar to those for the acoustic case;
kS would correspond to kP in Zhou and Greenhalgh (2006). The resulting total
spectra have one pole at kS and only a slight bend at kP . Oscillations increase in
frequency towards the pole. This behaviour becomes more pronounced with increas-
ing d values. Above kS , the imaginary part disappears and the real part representing
the evanescent phase decays rapidly to zero.

For a receiver placed at an azimuth of 0°(not shown), the amplitude of the P-part of
the spectra is maximal, resulting in a greater distortion of the total spectra around
kP , whereas for a receiver placed at an azimuth of 90°(not shown) the P-spectrum
disappears and the total spectrum is equivalent to the S-part.

(b) Source direction in the x-z-plane, receiver component in the x-z-plane but perpen-
dicular to the source direction.

Here, the P-part and the S-part both are of qualitatively the same shape as the
P-part in case (a). The former decays to zero towards kP , the latter towards kS ,
such that the pattern of the total spectra changes somewhat at kP . Again, the
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Figure 4.2: Solution amplitudes versus wavenumbers ky for a homogeneous full space
at source/receiver distances d of (a) 2.5λS and (b) 10λS . For each source/receiver
configuration, the P-wave contribution G P

ij , the S-wave contribution G S
ij and the total

solution Gij are shown separately (i , j ∈ {x , y , z}). The model is introduced in section
4.2.1. The receivers are located at an azimuth of 45° with respect to the source direction.
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effect of increasing oscillation towards kS is more pronounced at larger d values.
By contrast to (a), the amplitudes decay rather than increase towards kS and no
evanescent phase is observed.

For receivers placed at an azimuth of 0° and 90° (not shown) the solution is zero.

(c) Source direction in the x-z-plane, receiver component perpendicular to the x-z-
plane.

In this case, the P- and the S-part of the spectra again are of the same form,
this time first exhibiting an increasing amplitude, to decrease again towards the
respective critical wavenumbers. There is no pole but a discontinuity at kP or
kS and the real parts decay rapidly above these values, while the imaginary parts
disappear. Compared with cases (a) and (b), the spectral patterns of the resulting
sum for case (c) change more significantly at kP . Again, the oscillations increase
towards kP and kS , respectively.

For a receiver at an azimuth of 0° (not shown) the spectra retain the same shape
but with higher amplitude; at an azimuth of 90° (not shown) they are zero.

(d) Source direction perpendicular to the x-z-plane, receiver component parallel to
source direction.

In this situation, the P part is of the same shape as the S-part in case (a) with a
pole at kP and evanescent behaviour above, while the S-part assumes the shape of
the P-part of case (a), smoothly decaying to zero towards kS . The resulting sum
exhibits an increasing amplitude and increasing oscillation frequency towards the
poles at kP , whereas above kP the amplitude decreases while the oscillation again
increases towards kS .

4.2.2 Efficient sampling strategy

Solution symmetries

Having computed the FEM approximation to the solution of the wave equations in the
ω–x–ky–z-domain (3.2), the last step is the inverse transform back to the ω–x–y–z-
domain. For one component of the solution vector, denoted by Uiζ , the solution for
field component ζ ∈ {x , y , z} at model node i ∈ [1, n] (see section 3.1.4), this inverse
transform is given by

Uiζ (ω, y) =
1√
2π

∞∫
−∞

Uiζ (ω, ky ) e ikyy dky . (4.3)

A closer look at the global FEM matrix equation (3.47) reveals, that the solutions
for configurations xx , zz , yy , xz and zx are symmetric in ky , while those for configura-
tions xy , yx , zy , yz are antisymmetric in ky (see Appendix section A.3). Taking these
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symmetries into account, equation (4.3) can be rewritten as

Gζυ (y) =



√
2

π

∞∫
0

Gζυ (ky ) cos (kyy) dky for ζυ ∈ {xx , zz , yy , xz , zx}

√
−2

π

∞∫
0

Gζυ (ky ) sin (kyy) dky for ζυ ∈ {xy , yx , zy , yz}
, (4.4)

where Gζυ is one part of the FEM Green’s tensor introduced in Appendix section A.3;
note that I have abbreviated the functional dependencies. This means that only the
positive half of the ky -space needs to be sampled and thus half of the computation time
can be saved.

In section 3.1.3 of the previous chapter I restricted the source to locations within the
x-z-plane, implying yS ≡ 0. Source/receiver distances perpendicular to the x-z-plane,
due to sources and/or receivers placed at y 6= 0 can be accounted for during the inverse
transform (4.4). Since the problem is by definition invariant with respect to translation
in the y -direction, the variable y denoting the receiver position in equation (4.4), can
be replaced by the out-of-the-plane source/receiver distance ∆y := y − ys .

If both source and receiver are placed inside the x-z-plane (i.e. ∆y ≡ 0), the inverse
transform reduces to

Gζυ (y) =


√

2

π

∞∫
0

Gζυ (ky ) dky for ζυ ∈ {xx , zz , yy , xz , zx}

0 for ζυ ∈ {xy , yx , zy , yz}
. (4.5)

Note that for configurations xy , yx , zy and yz the solution is not zero in the ω–x–ky–z-
domain. It vanishes in the case of ∆y ≡ 0 only during the inverse transformation, due
to its symmetry.

Gauss-Legendre sampling

Analyses of the analytic ky -spectra have revealed the following important features that
need to be considered when establishing a suitable sampling strategy:

(i) All spectra contain significant contributions up to kS . Above this point the signal
vanishes or decays rapidly. No significant energy is observed beyond 1.2 kS .

(ii) Receivers near the source are affected by a more pronounced evanescent phase
beyond kS than compared with the more distant receivers.

(iii) Like in the acoustic case, the more oscillatory nature of the spectra at large distances
d requires a denser sampling. The number of sample points should be set according
to the value of the maximum distance dmax.

(iv) Cases (c) and (d) have discontinuities at kP and kS .
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Following the system introduced by Zhou and Greenhalgh (2006), these points can
be addressed by dividing the integration interval into sub-intervals of [0− kP ], [kP − kS ]
and optionally [kS − 1.2kS ] with NP , NS − NP and 0.2 NS sample points, respectively.
The values of NP and NS are defined as

NP = max

{
5,

M · dmax

λP

}
and NS = max

{
10,

M · dmax

λS

}
(4.6)

where for my examples λP = 6.5 m and λS = 4 m. Within each interval, the points are
distributed according to Gauss-Legendre quadrature sample spacings (e.g. Press et al.,
1992). The sampling inside the interval [0, kP ] needs some special consideration if the
symmetry of the solution should be taken into account. To achieve a suitable sampling
density, I compute 2NP − 1 Gaussian quadrature weights and points for the interval
[−kP , kP ] and use only the last NP weights, corresponding to the sampling points inside
the interval [0, kP ]; the first weight additionally has to be halved.

Once the NGL = 1.2NS (taking the nearest integer value) points having abscissae
KYjGL

and weights WjGL
are determined, the inverse transform (4.4) reduces to the sum

Gζυ (y) =

NGL∑
jGL=1

WjGL
G̃jζυ (KYjGL

) , (4.7)

where

G̃ζυ (KYjGL
) :=


√

2

π
Gζυ (KYjGL

) cos (KYjGL
y) for ζυ ∈ {xx , zz , yy , xz , zx}√

−2

π
Gζυ (KYjGL

) sin (KYjGL
y) for ζυ ∈ {xy , yx , zy , yz}

,

(4.8)
and restriction to y ≡ 0 simplifies this to

G̃ζυ (KYjGL
) :=


√

2

π
Gζυ (KYjGL

) for ζυ ∈ {xx , zz , yy , xz , zx}
0 for ζυ ∈ {xy , yx , zy , yz}

, (4.9)

Figure 4.3 shows the distribution of the Gauss-Legendre sampling points for different
values of the sampling parameter M in equation (4.6) and Figure 4.4 illustrates how
M can be determined for the example of case (a) of Figure 4.2, which proved to be

PSfrag replacements

M = 2
M = 3
M = 4
M = 6

0 kP kS 1.2kS
wave number ky [1

s
]

Figure 4.3: Gauss-Legendre sampling points along the ky -axis for different values of
sampling parameter M assuming a maximal source/receiver distance of dmax = 20λS .
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Figure 4.4: Error with respect to the analytic solution in the ω–x–y–z-domain for the
Gauss-Legendre sampling on the analytic solution in the ω–x–ky–z-domain. Shown is
the solution versus source/receiver distance d in units of λS on an axis along the source
direction for a x-directed source and a x-directed receiver. (This has been the worst case
scenario for the FEM accuracy in the analysis of the 2D case.) The analytic solution for
the full space model introduced in section 4.2.1 is represented by black lines. They are
almost completely hidden behind the inversely transformed solutions shown in blue, red,
green and purple for M = 2, 3, 4 and 6, respectively. (a) and (b) show results for the
real and imaginary parts of the solution when the sampling is restricted to ky < kS . (c)
shows the improvement for the real part of the solution, if the sampling is extended to
wavenumbers of up to 1.2kS .

the most difficult for obtaining accurate results. The real and imaginary parts of the
Green’s functions for x-directed sources and receiver components as a function of d are
displayed in Figures 4.4a-4.4c. Black lines (only visible near the source in panel (a)) are
waveforms representing the analytic full space solutions in the ω–x–ky–z-domain (see
Appendix section C.2.3), whereas the blue, red, green, and purple lines are waveforms
obtained by inverse transformation of the analytic ky -spectra given in equations (C.9)
by means of Gauss-Legendre quadrature using different choices of M and a fixed value
of dmax = 20λS . Results are only shown for d > λS in Figure 4.4, because near-source
effects prevent accurate results at shorter distances.

Deviations of the coloured lines from the black ones and the associated relative
errors indicate that M = 2 and M = 3 lead to unsatisfactory results at large d values
(Figure 4.4). There is a substantial increase in accuracy for M = 4. Results for M = 6
are visually indistinguishable from those for M = 4, but the relative errors are notably
smaller. The influence of the sampling interval [kS − 1.2kS ] can be seen by comparing
Figures 4.4a and 4.4c. Minor differences at short distances are the result of ignoring
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the evanescent phase in the calculations for Figure 4.4a; extending the ky sampling to
1.2 kS results in lower relative errors. No improvements would result from extending the
sampling interval in calculations of the imaginary part, because it vanishes above kS .

4.2.3 FEM results

Homogeneous full-space model

As an example for 2.5D FEM simulation I used the same subsurface parameters, signal
frequency and source/receiver configurations as for the analytic ky -spectra presented in
the previous section and shown in Figure 4.2. The 60 m×60 m model was surrounded by
a Perfectly Matched Layer (PML) of 10 m thickness, corresponding to a PML width of
nPML = 50 elements. A mesh of quadratic finite elements with 0.2 m edge length provides
20 nodes per minimum wavelength. This results in 160,000 elements and 160,801 nodes.
Such a parametrisation is expected to provide accurate results (see section 3.2.1). The
parameter dmax was chosen to be the maximum distance from the source in the centre of
the model to the boundary between model and PML, approximately 42 m. My preferred
choice M = 4 yields Np = 30, NS −Np = 20, and 0.2 NS = 20 (a total of 60 ky sample
points).

The relative errors of the FEM solution for M = 4 and sampling up to 1.2 kS are
1.15% and 0.38% for the real and imaginary parts, respectively. Although these errors
are higher than those based on the analytic solution using the same sampling strategy
(i.e., 0.57% in Figure 4.4c and 0.06% in 4.4b), they are acceptably good. I conclude
that numerical errors caused by my ky sampling strategy are not a limiting factor in 2.5D
frequency-domain FEM modelling of elastic waves.

Homogeneous full-space model with stochastic inhomogeneities

Now, I investigate the performance of my ky sampling strategy using a moderately het-
erogeneous model, for which no analytic solution exists. As a reference, I compare
sampling based on my strategy with a very fine uniform sampling. The average sub-
surface parameters, signal frequency, source/receiver configurations and FEM mesh of
the now 80 m × 80 m model remain the same as for previous calculations using the
homogeneous full-space. Heterogeneities are added in form of stochastic fluctuations
(standard deviation = 10%, correlation length = 6 m (2.5λS), Hurst number = 0.2)
to the velocities and density, from a distance of 2λS to 20λS . For the dense uniform
sampling computations, the interval between ky values was set to 10−3m−1, yielding a
total of 1886 wavenumbers. For sampling based on my adapted strategy, setting M = 6
results in a total of 144 wavenumbers. Figure 4.5 demonstrates that the two sam-
pling strategies reproduce the ky -spectra with comparable accuracy. In the regions with
highly oscillatory behaviour around the critical wavenumber kS , my sampling strategy
chooses some sampling points not covered by the even sampling, visible in the spectra for
d = 2.5λS in Figures 4.5b and c. The general shapes of the spectra in Figures 4.2 and
4.5 are similar in many respects, but those in Figure 4.5 are distinguished by generally
higher frequency oscillations. For case (b) there is a lack of decay in amplitudes towards
higher wavenumbers and there are nonzero values in the imaginary part above kS . These
features probably result from shear wave scattering at the inhomogeneities.
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Figure 4.5: Solution amplitudes versus wavenumbers ky for a slightly inhomogeneous full
space model with stochastic parameter fluctuations around the mean parameter values
of the homogeneous model introduced in section 4.2.1 at source/receiver distances d of
(a) 2.5λS and (b) 10λS . The receivers are located at an azimuth of 45° with respect
to the source direction.
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4.3 Homogeneous isotropic half space

Figures 4.6 and 4.7 show ky -spectra computed for a homogeneous half space model
with the same elastic parameters as for the full space model, the analytic ky -spectra of
which are shown in Figure 4.2. The spectra are computed for a FEM model of the
size 82 m × 41 m and a frequency of 300 Hz. The source is placed at the free surface,
in the middle of the top edge of the model. The two receivers are placed at distances
2.5λS and 10λS to the right of the source. Due to the free surface, the phase exhibiting
the smallest velocity is no longer the S-wave but the Rayleigh wave, propagating with a
velocity of vR = 1092 m/s (see Nkemzi, 2008). Thus the smallest wavelength is not λS ,
but the Rayleigh wave wavelength λR = 3.6 m. I chose a FEM grid step of dh = 10 cm to
assure an accurate simulation with N = 36 nodes per minimal wavelength. Furthermore,
the highest critical wavenumber is not kS , but kR = 1.73 m−1 and hence the spectra
have to be sampled up to 1.2kR = 2.07 m−1. For Figures 4.6 and 4.7 I employed an
even sampling using a spacing of dky = 0.002 m−1 (nky = 1052 sampling points).

By comparing Figures 4.6 and 4.7 to Figure 4.2 one observes that the half-space
and full-space spectra exhibit similar characteristics. The only difference involves the
additional critical wavenumber corresponding to the Rayleigh wave velocity. Only con-
figurations xx and xy (see Figure 4.7a and c) exhibit a pole at kS , the former one is
more pronounced. At kR , all configurations except for xx have a pronounced pole. At
kP , configurations zx (Figure 4.6b), zy (Figure 4.6c) and xy (Figure 4.7c) include a
discontinuity, configuration yy exhibits a small pole there.

Since all three critical wavenumbers are known analytically and the structure of the
spectra is qualitatively the same as the structure of those for the homogeneous full space,
a modified version of the sampling strategy proposed in section 4.2.2 can be employed.
That is, one can divide the ky -axis into the intervals [0 − kP ], [kP − kS ], [kS − kR ]
and [kR − 1.2kR ] and use NP , NS − NP , NR − NS − NP and 0.2 NR sampling points,
respectively. The values of NP and NS can be defined using equation (4.6) and NR is
suggested to be chosen as

NR = max

{
15,

M · dmax

λR

}
. (4.10)

4.4 Sampling problems for heterogeneous models

For highly heterogeneous full-space models, each subvolume corresponding to different
values of vP and vS in the model, will give rise to corresponding critical wavenumbers. In
the sampling strategies I presented in sections 4.2.2 and 4.3, this would lead to a very high
number of integration intervals that would have to be taken into account, rendering the
approach to be inefficient. Moreover, for heterogeneous half-space models and full-space
models with internal boundaries, the critical wavenumbers corresponding to the surface-
wave and Stoneley phases are not known. Since the sampling strategies I presented in
sections 4.2.2 and 4.3 are based on the knowledge of these critical wavenumbers and the
associated structure of the ky -spectra, they are not suitable for strongly heterogeneous
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Figure 4.6: Solution amplitude versus wavenumber ky for a homogeneous half space
model with model parameters of the full-space model introduced in section 4.2.1 at
source/receiver distances d of (a) 2.5λS and (b) 10λS . The vertically directed source
and the receivers are located on the free surface.
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Figure 4.7: Solution amplitude versus wavenumber ky for a homogeneous half space
model with model parameters of the full-space model introduced in section 4.2.1 at
source/receiver distances d of (a) 2.5λS and (b) 10λS . The horizontally directed sources
and the receivers are located on the free surface.
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models with or without a free surface. The only feasible solution to this problem is to
employ an even sampling along the ky axis.

An even sampling may include a large number of wavenumbers, which will be compu-
tationally expensive. Therefore, it is critical to choose an appropriate sampling interval.
In the following, I will first introduce an even sampling strategy and then investigate
the trade-off between the sampling density in ky -space and the density of the FEM grid.
Finally, I will discuss a potential problem with even sampling that may occur, when one
or more wavenumbers are too close to the poles of the ky spectra.

4.4.1 Sampling strategy for even sampling

Since the symmetries of the solution, presented in section 4.2.2 are also preserved for
heterogeneous models, the sampling still only has to be performed for positive ky -values,
starting at ky = 0 1/m.

In a similar manner as for the Gauss-Legendre sampling strategy, the upper endpoint
of the sampling interval is chosen to be

kmax
y := 1.2

2π

λmin
, (4.11)

where λmin := vmin

f
is the wavelength corresponding to the minimum velocity of the sub-

surface model. For models without a free surface, vmin is equal to the minimal S-wave
velocity; for models including a free surface, it is usually the minimum velocity of the
surface wave phases. Since the Rayleigh wave velocity is not known analytically for
heterogeneous models, I compute it for a homogeneous half space with wave velocities
equal to the minimum values of vP and vS in the heterogeneous model.

The sampling density ∆ky and the total number of sampling points nky are chosen
to be

nky = d1.2M
dmax

λmin
e and ∆ky =

2π

Mdmax
, (4.12)

where M is the sampling parameter already used in equations (4.6) and (4.10). In this
way, the total number of sampling points is in accordance with the number chosen for the
Gauss-Legendre sampling and the sampling density is independent of frequency and the
model parameters. It depends only on the maximum source/receiver offset dmax, which
was found to be a good measure of the highest degree of oscillation in the ky -spectra
(see Figures 4.2, 4.5, 4.6 and 4.7).

The inverse transform to the ω–x–y–z-domain can still be performed using equation
(4.7), where the sampling points KY are now evenly spaced and the Gauss-Legendre
weights W are replaced by 1

nky
.

4.4.2 Grid density dh versus sampling density ∆ky

To test the importance of the sampling parameter M on the accuracy of the solution
for inhomogeneous models using an even sampling in ky -domain, I performed a series of
simulations for ten different values of M and six different grid steps dh for a gradient
model and a layer-over-half-space model. The latter mimics a gravel pit with a water
table at ten meters depth. I chose a signal frequency of f = 150 Hz. The model geometry
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Figure 4.8: Model geometry and source locations (denoted by red stars) for the sampling
test. Both models are of dimension 30 m× 50 m with PMLs of 5 m width (shaded grey).

.

and source locations are shown in Figure 4.8, whereas the depth-dependent values of the
elastic parameters are depicted in Figure 4.9. The values chosen for M and grid step
dh, together with the resulting values for the number of ky -sampling points nky and the

number of grid steps per minimum wavelength N = λmin

dh
, are given in Tables 4.1 and

4.2.

As explained in section 4.4.1, I estimate the minimum propagation velocity from the
Rayleigh velocity of a homogeneous half space, having seismic P- and S-wave velocities
equivalent to the minimal values of vP and vS in the models. This velocity, denoted
by vR in Tables 4.1 and 4.2, and its corresponding wave length λR = λmin, determine
the width of the sampling interval along the ky -axis and the number of sampling points
via equations (4.11) and (4.12). Note that the values chosen for the grid step dh are
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Figure 4.9: Elastic parameters of the two models employed for the sampling test. The
gradient model has the same parameters as the one used throughout the thesis (see e.g.
Figure 2.1). The water table model is supposed to simulate a gravel pit with a water
table at a depth of 10 m.
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dh [cm] 40 25 20 12.5 10 8 v min
P = 1500 m/s vR = 566 m/s

N 9 15 19 30 38 47 v min
S = 600 m/s λmin = 3.77 m

M 5 10 15 20 25 30 35 40 45 50

nky 81 161 241 321 401 481 561 641 721 802

Table 4.1: Sampling test parameters for the gradient model.

dh [cm] 40 25 20 12.5 10 8 v min
P = 400 m/s vR = 254 m/s

N 4 7 9 14 17 21 v min
S = 300 m/s λmin = 1.69 m

M 5 10 15 20 25 30 35 40 45 50

nky 185 369 553 737 921 1105 1289 1473 1657 1841

Table 4.2: Sampling test parameters for the water table model.

equivalent for both models and thus the resulting values for N differ in Tables 4.1 and
4.2 due to the different minimum velocities.

Since there are no analytic solutions available, I consider the solution computed for
the finest FEM grid (dh = 8 cm) and the densest ky -sampling (M = 50) as the reference
solution. The relative errors of all other solutions are computed with respect to this
solution. For each solution, I calculate the difference from the reference solution. The
median of the absolute value of this difference, divided by the maximum value of the
reference solution, is then taken to be the relative error. I restrict the error computation
to the area outside a radius of λR around the source to avoid near-field effects.

Figures 4.10 and 4.11 show overview plots of the relative error values for the water
table model and the gradient model, respectively. The panel columns show, left to right,
error values for the source/receiver configurations xx , zz , yy , xz and zx (the solutions
for all other configurations vanish, see equation (4.5)). The panel rows show the results
for the five different source depths zs depicted in Figure 4.8. The colour scale is clipped
at a value of 10%, the highest values exceeding 100%.

In most of the panels, the error plots are dominated by vertical stripes (the sporadi-
cally occurring deviations from the vertical stripe patterns will be discussed later). This
indicates that the solution accuracy is governed primarily by the grid step dh and that
the ky sampling plays a less important role. The results further indicate that a value
of N = 20 seems to be sufficient; higher values of N do not significantly improve the
accuracy. This means that the deviation values shown in Figure 4.11 would not change
significantly if a simulation for N = 20 and M = 50 would have been chosen as the ref-
erence solution, such that the absolute values in Figures 4.10 and 4.11 can be compared
(the reference solution for Figure 4.10 is computed for N = 21 and M = 50). This
comparison shows that the error values also are not too dependent on the subsurface
model parameters. The error values for N = 9, 14 and 17 for the water table model
(Figure 4.10) are about the same as those for N = 9, 15 and 19 for the gradient model
(Figure 4.11).
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Figure 4.10: Relative median difference of solutions computed with different sampling
densities in the ky -space and different grid steps in spatial sampling for the water table
model. M is the quantity governing the sampling density in the ky -domain and N is the
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4.4.3 The failure of the PML boundary conditions at the critical
wavenumbers

Superimposed on the vertical stripe patterns in Figures 4.10 and 4.11 there are combi-
nations of M and N for which large deviations from the reference solution are observed.
This applies particularly to the zz and to some extent to the xx source-receiver combi-
nations, but other configurations seem to be affected as well. There is no clear pattern
of occurrence; the large errors seem to appear almost randomly.

To understand this problem, I have plotted in Figure 4.12 the actual frequency-
domain wave fields for the zz configuration and a source depth of zs = 0 m calculated
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Figure 4.12: Thumbnail solution plots for configuration zz and source at the free surface
for the gradient model. The boundaries to the PMLs are drawn as a black frame and
the source location is designated by the black dots. The coordinate axes are omitted for
better visibility; the model geometry is shown in Figure 4.8. M is the quantity governing
the sampling density in the ky -domain and N is the number of grid points per minimum
wave length. See Figure 2.7b for the colour scale.
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with the gradient model (see Figures 4.9 and 4.11 and Table 4.1). The wave fields
associated with large errors exhibit bold horizontal bars of high amplitude values, which
are not suppressed at all inside the PMLs.

The reason for the strange patterns observed for the problematic combinations of M
and N in Figure 4.12 is the even sampling along the ky -axis. Since an even sampling
strategy chooses ky values irrespective of any critical wavenumbers associated with the
model (which are in this case unknown), it is possible that some sampling points fall
close to a pole in the spectrum. As can be seen in the plots showing the ky -spectra
for homogeneous models (Figures 4.2, 4.6 and 4.7), the solution includes significant
evanescent-phase energy in the direct vicinity of some of the critical wavenumbers. The
configurations predominantly affected by this strange effect, xx , zz and yy , are indeed
the configurations, for which the ky -spectra for the homogeneous half space show an
increase in amplitude towards the critical wavenumber (see Figures 4.7a, 4.6a and 4.7b),
such that the amplitude of the evanescent phase is higher than that for the propagating
phases at the ‘normal’ wavenumbers.

This leads to problems with the PML boundary conditions as described in section
3.1.2. They are designed primarily for propagating waves, and do not sufficiently at-
tenuate the evanescent phases. This results in standing waves as observed in Figure
4.12.

The problem is illustrated in more detail in Figure 4.13, which shows the solution
for M = 20, N = 47 and the summand Gzz (KYj) of the inverse transform sum (see
equations (4.7) and (4.9)) for j = 174 and abscissae KYj = 1.08699 m−1. The figure
clearly shows a standing wave, where the shape of the wave field seems to be unrelated to
the source location. Since this solution has a much higher amplitude (by a factor of about
20) than all the other solutions contained in the sum (4.7), the inversely transformed
solution is heavily influenced (and contaminated) by this summand.

The (seemingly critical) wavenumber ky = 1.08699 m−1 is contained in the set of
sampling points for M = 20 and M = 40 for the gradient model, but not in those for any
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Figure 4.13: Example plot showing a solution for a critical wavenumber (ky -index 174
for M = 20 and N = 47) for the gradient model. The wave field shows the behaviour of
a standing wave rather than that of a propagating wave. The PMLs (boundaries shown
as a black frame) do not have any effect and the solution is independent of the source
position (shown as a black arrow). See Figure 2.7b for the colour scale.
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other values of M . The finding, that the contaminated solutions are not observed for
combinations of a certain value of M with all values of N hints to the conclusion that the
critical wavenumbers for the continuous problem and those for the discretised problem
are not equivalent. It rather seems, that their location along the ky -axis depends on the
choice of the grid step dh for the FEM grid.

Thus, even if the critical wavenumbers for the continuous problem involving het-
erogeneous models would be known analytically, their values would be modified by the
discretisation for the FEM simulation, such that accidentally choosing them as a sampling
point cannot be avoided.

4.5 Conclusions

This chapter showed that 2.5D forward modelling for elastic isotropic wave propagation,
as a compromise between the physically inappropriate 2D forward modelling and the
computationally very expensive full 3D forward modelling, can be problematic.

For homogeneous and nearly homogeneous full space models, I presented an efficient
strategy for sampling the ky -space that leads to solutions of acceptable accuracy (see
section 4.2). The strategy can be extended to the case of homogeneous half space
models (see section 4.3).

However, this sampling strategy cannot be employed for highly heterogeneous models.
In the case of strongly heterogeneous full-space models, too many critical wavenumbers
would lead to a very high number of integration intervals. In the case of a heterogeneous
half space, which is the case my work is concentrated on, the critical wavenumbers
corresponding to the dominant surface wave phases cannot be computed. Dense even
sampling strategies along the ky axis can lead to erroneous solutions (see section 4.4).
The reason for the failure of the sampling strategy for heterogeneous models is the
presence of critical wavenumbers which produce pole-like behaviour, contaminating the
wavenumber spectra. It is highly likely that some of the sampling points lie on or close
to a critical wavenumber and such coincidence cannot be avoided.

To overcome this problem, one could try to suitably modify the PML boundary
conditions. An alternative option could be to avoid the poles of the ky spectra. They
are located on the real axis. By either shifting the ky values or the poles away from the
real axis the poles could be by-passed. This will be discussed in more detail in Chapter
5.
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Chapter 5

Conclusions and Outlook

5.1 Main results

5.1.1 Sensitivities and data information content

The comparison of wave fields and waveform sensitivities in Chapter 2 indicated clearly
that the acoustic approximation is inadequate for near-surface waveform inversion prob-
lems and that an elastic approach needs to be considered. The P-wave arrivals, which
are the only phases modelled with an acoustic approximation, are concealed by surface-
wave and guided-wave phases. These phases that are absent in wave fields calculated
with an acoustic approximation show the highest sensitivities with respect to the elas-
tic subsurface properties. Therefore, the acoustic approximation does not only produce
incorrect wave fields, but also neglects important information that could be extracted
from the data.

A 2D analysis of the information content of elastic multi-component data sets sug-
gests that a vertically directed source and a horizontally directed receiver provide the
highest subsurface information content. From the reciprocity principle, the same informa-
tion content would be offered by a horizontally directed source and a vertical-component
geophone. However, the former option can be implemented in the field with less effort.
There is little additional benefit in recording the full tensorial wave fields (i.e., vertical
and horizontal sources in combination with vertical and horizontal receiver components).

If complete seismograms (in the time domain) or corresponding complete spectra (in
the frequency domain) would be considered during an inversion, the same amount of
information would be obtained. Windowing the time domain data or selecting only a few
frequencies obviously reduces the information content, but it is interesting to note that
a few judiciously chosen frequencies allow the information content to be better exploited
compared with time windowing approaches.

Sensitivity analyses and computations of data information content were performed
for several subsurface models. Although sensitivities and the related measures show
considerable variations between the individual models, the above conclusions seem to be
model independent.
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5.1.2 Elastic modelling

I have implemented an elastic frequency domain finite element (FEMFd) code suitable
for computing seismic data in the absence or presence of a free surface. The algorithm
has been validated by a comparison with an analytical full space solution. The results
indicated that the solution accuracy depends on the choice of the source and receiver
components that are modelled. For an in-line configuration, e.g. an x-directed source
and an x-directed receiver, the accuracy is about four times higher compared with a
configuration involving a z-directed source and an x-directed receiver. This needs to be
considered when integrating my forward solver into a full waveform inversion programme.

To account for the artificial ground boundaries at the left, right and bottom of the
computational domain, I have implemented perfectly matched layer boundary conditions
to suppress artificial reflections. They proved to be very effective. In most cases, a
boundary layer only 10 grid points wide was sufficient, and with a layer width of 30 grid
points even all the troublesome cases (e.g. sources close to the boundary) could be
handled adequately.

A comparison of modelling results with a well established time domain finite difference
code showed a very good match. In the framework of this comparison I could also
draw very important conclusions with regard to the general computational efficiency of
time and frequency domain modelling algorithms. If the response for several sources is
required, the frequency domain approach is much faster compared with the time domain
computations. This conclusion also holds when all frequencies required to generate a
complete seismogram are computed.

This advantage is a consequence of the direct matrix solver used in the frequency
domain algorithm but comes at the expense of a higher computer memory consumption.
This is currently the major limitation for large-scale (e.g. 3D) elastic frequency domain
modelling and inversion tasks (see e.g. Virieux et al., 2009). A possible option could
be to replace the direct matrix solver by an iterative solver (e.g. Plessix, 2009), which
would reduce the memory requirements. However, this would sacrifice the advantages
for multiple source computations.

5.1.3 Sampling strategies for elastic 2.5D forward modelling

Generally, 2.5D modelling of elastic wave propagation is a compromise between ex-
pensive 3D modelling and the crude approximation of 2D modelling in combination
with data filtering (e.g. Williamson and Pratt, 1995). The solution is computed in the
frequency-wavenumber domain, where the additional Fourier transform is taken along
the coordinate axis along which the model parameters are constant, which is in my case
the y -direction. Thus, the equations that have to be solved represent a 2D problem,
which has to be solved repeatedly for a series of wavenumbers ky . Finally, an inverse
Fourier transform with respect to wavenumber ky yields the frequency-domain solution.
A critical aspect of this strategy is the choice of the wavenumbers ky .

For homogeneous and mildly heterogeneous elastic isotropic models an efficient sam-
pling strategy was introduced in Chapter 4 that is based on the à priori knowledge of the
critical wavenumbers of the body waves in the medium. The number of sampling points
along the ky -axis is proportional to the maximal source/receiver distance and inversely
proportional to the minimum wavelength occurring in the resulting wave fields.
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For inhomogeneous models, this efficient strategy is not applicable since the number
of critical wavenumbers is prohibitively high or, in presence of a free surface, the critical
wavenumbers (associated with the surface waves) are unknown. Consequently, an even
sampling has to be employed. Again, the number of forward solutions is proportional
to the maximum source/receiver distance and inversely proportional to the minimum
wavelength, but the total number of required wavenumbers is higher compared with the
optimised non-equal sampling strategy for the homogeneous models.

I have investigated the influence of the sampling density along the ky -axis on the
solution accuracy, and compared this with the effects of different spatial sampling densi-
ties with the finite element grid. Generally, effects of the finite element spatial sampling
density dominates over the ky sampling. However, in the course of these investigations
I discovered a fundamental problem of using even ky sampling. It may happen that a
sample lies on or close to an unknown critical wavenumber, which distorts the solution in
a major way. This requires further modifications of the 2.5D algorithm. This is discussed
in more detail in the next section.

5.2 Areas of future research

5.2.1 Sensitivities and data information content

Sensitivity calculation

Due to the lack of alternative options at the time, I computed waveform sensitivities using
a brute force perturbation approach (Chapter 2). In the mean time, the explicit sensitivity
expressions established for the acoustic case (Zhou and Greenhalgh, 1999), have been
extended to the 3D and 2.5D elastic cases (Zhou and Greenhalgh, 2009, Zhou and
Greenhalgh, 2010a). These expressions are currently implemented in the framework of
another PhD project at ETH Zurich (Manukyan, 2010). This will allow elastic sensitivities
for all nine components of the Green’s tensor (i.e. all possible source/receiver direction
combinations) to be computed.

These new developments will allow the 2.5D elastic sensitivities for source/receiver
configurations to be directly compared to their 2D counterparts to investigate the influ-
ence of the geometrical spreading on the sensitivities. The additionally available sensitivi-
ties for the source/receiver configurations involving y -directed sources and/or y -directed
receivers can be used to compare the amplitude of the sensitivities of Rayleigh-wave
phases (already visible in the 2D case) to those of Love-wave phases.

Data information content

As discussed in Chapter 2, the sensitivities computed with the brute force approach
exhibit a significant amount of numerical noise. This error is propagated and amplified
during the computation of the approximate Hessian matrices, which are the basis of the
information content analysis. This required a relatively high eigenvalue cutoff threshold
θ = 10−5 to be chosen for computing the RER information criterion (see equation
(2.18) and section 2.4.1). With the explicit sensitivity expressions the numerical errors
are expected to be much lower, which would allow a lower threshold to be chosen, such
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as in Maurer et al. (2009) This may enable more subtle features of the data information
content offered by the individual source/receiver combinations to be analysed.

The availability of the configurations yy , yx (xy) and yz (zy) will further expand the
scope of my experimental design analysis. In particular, it will be interesting to see how
well the yy configuration performs, which is commonly employed for shear wave (SH)
investigations.

Having more accurate sensitivities available would make it, in my view, also worth-
while to investigate other measures of information content. In Chapter 2, I used the
criterion of the Relative Eigenvalue Range (RER, see equation (2.18)), which is a mea-
sure of the size of the null space. As already discussed in section 2.4.2, the RER criterion
does not take into account the actual shape of the normalised eigenvalue curve. For this
reason I proposed an alternative criterion to assess the information content, that is the
Relative Eigenvalue Area criterion (REA, see equation (2.22)). Due to the numerical
inaccuracies of the brute-force approach I discarded this option, but for more accurate
eigenvalue spectra, the REA criteria should be further investigated. According to Curtis
(2004), the REA is a direct measure of the expected post-survey model parameter uncer-
tainties if Gaussian errors can be assumed, whereas the RER only measures the number
of model parameters that can be resolved.

Besides considering alternative information content criteria, the experimental design
analysis could be extended to an investigation of the information content with regard to
restricted parts of the model that may be of particular interest. This can be achieved by
using focusing criteria, which replace the eigenvalues λi in equations (2.18) and (2.22)
by
∑nM

j=1 λ
2
i (ei · vj), where nM is the number of model parameters. The ei are the

eigenvectors of the approximate Hessian matrix, corresponding to the λi , and the vj are
a basis of the subspace of interest (see Curtis, 2004).

In addition to only investigating the influence of data selection on the information
content, one may also consider data weighting. This can be easily achieved using the
operator ŴD in the equations (2.3) and (2.11) and in the approximate Hessian matrix
whose eigenvalues are used in equation (2.18). Data weighting can be done, for example,
by estimating the noise conditions and setting the diagonal elements of ŴD proportional
to the expected signal-to-noise ratio.

Model resolution

Using the explicit sensitivity expressions, the approximate Hessian matrices should be
accurate enough to be used for computing model resolution matrices RM via equation
D.13 given in Appendix D. Thus, the investigation of the data information content
can be supplemented by an analysis of the model resolution ability of different kinds of
data sets. The diagonal elements of RM are a measure of how well the single model
parameters can be resolved. For example, it would be interesting to see which parts
of the model are well resolved for certain time window choices in the time domain or
for certain frequencies in the frequency domain. I would expect that data windowing
in the time domain would result in focused model resolution in those areas where the
sensitivities are high at the selected times. For frequency domain data selection, I would
rather expect a more even resolution of the model, with varying detail depending on the
frequencies chosen.
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5.2.2 Elastic modelling

Anisotropy and viscoelasticity

My FEMFd forward solver is currently being extended to include anisotropic media
(Manukyan, 2010). A further useful extension would be to incorporate viscoelastic-
ity, which should be straightforward. The only change necessary would be to replace
the real-valued elastic parameters by complex-valued quantities (see e.g. Forbriger and
Friederich, 2005). However, this may require the PML boundary conditions to be refor-
mulated (Liu, 1998).

Minor topographic features may have a significant effect on the waveforms observed.
As discussed in Robertsson et al. (1996), it is therefore necessary to account for topog-
raphy of the free surface (and subsurface discontinuities) in obtaining reliable results.
This can be implemented in my finite element algorithm by incorporating unstructured
meshes. Additionally, this would allow grid refinement strategies to be implemented,
which would not only facilitate complicated topographies to be considered, but it could
also generally improve the accuracy and efficiency of the algorithm. (e.g. Blome et al.,
2009).

5.2.3 Elastic 2.5D forward modelling

Further reduction of sampling points

The efficiency of the 2.5D elastic forward solver is closely related to the number of sam-
pling points along the ky -axis for which the solution has to be computed. This number
is constrained by the largest wavenumber that may occur. In Chapter 4 the largest
wavenumber was determined by the lowest velocity (either lowest vS or Rayleigh wave
velocity). Preliminary tests revealed that the largest wavenumber is governed primarily
by the velocities at the source point, since the source-region properties determine which
wavenumbers are excited. This should be further investigated. I propose the following
test procedure, sketched in Figure 5.1:

· A full-space model comprising two homogeneous half spaces (parts), with two different
values of the critical wavenumber kS should be used (see Figure 5.1).

· The source should be placed in the model region having the lower critical wavenumber
kS (left side in Figure 5.1).

· For different distances db of the source to the boundary between the low-kS medium
and the high-kS medium (Figure 5.1a to c), the maximal ky can be determined, for
which the solution at receivers in the high-kS medium contains significant energy.

· I expect that for source positions far away from the internal boundary, only energy for
wavenumbers up to the low-kS threshold will be observed. For distances db smaller
than some minimal distance dbmin (to be determined), I suspect there will be energy
contributions up to the high-kS threshold, induced by near-field phases that reach into
the high-kS -medium.

An obvious extension would be to consider additional intermediate layers between
source and receiver which may ‘filter’ out the higher wavenumbers.
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low kS high kS

dbF(a)

dbF(b)

dbF(c)

Figure 5.1: Sketch of a possible source/receiver geometry for finding the minimum upper
limit of the ky -sampling interval. The areas shaded in grey denote PML boundaries, the
red stars and blue triangles denote the locations of sources and receivers, respectively. In
(a), (b) and (c) the source is placed at increasing distance from the boundary between
two homogeneous half spaces having different values of kS .

Avoiding the poles in the ky wavenumber spectra

To overcome the problems related with the poles of the wavenumber spectra, three
different possible solutions could be tested:

(i) When ky is considered to be a complex-valued parameter, written as ky := kR
y +

ik I
y , the poles of the ky -spectra are located on the real axis. Thus, one could

sample the ky -spectra along a contour that circumnavigates the poles by adding a
small imaginary part k I

y to the wavenumber in the solution process. For discrete
wavenumber methods for 1D media, Phinney (1965) rejects this possibility since
the additional exponential term ek I

yy that is introduced in the inverse transform
(4.3) would be prone to amplify singularities in the ky spectra, negating the benefit
of integration away from the poles on the real ky -axis.

(ii) A method of widespread use in discrete wavenumber summation techniques (e.g.
Phinney, 1965; Bouchon, 1979; Müller, 1985; Mallick and Frazer, 1987; Bouchon,
2003) for synthetic seismogram computations is the complex-frequency method.
Here, the spectra are computed for complex-valued frequency with a small imaginary
part, which is determined by the length of the seismograms that are to be computed
(Bouchon, 2003). Instead of moving the integration contour away from the poles,
the poles are moved away from the real ky -axis and the integration along the real
axis can be easily performed. This method is well suited, for obtaining solutions in
the time domain. The resulting waveforms are exponentially damped towards later
times, which can be compensated by multiplying the time domain signals with eω

I t ,
after the inverse temporal Fourier transform is taken, where ωI is the imaginary
part of the angular frequency that has been used in the solution process (note that
ωI is equal for all frequencies).

(iii) In the case of viscoelastic models, the poles of the ky -spectra along the real axis are
likely to disappear, as in the case of the discrete wavenumber techniques (Forbriger,
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2003). Thus, introducing viscoelasticity (i.e. complex elastic constants) into the
FEMFd forward solver might be the most elegant way to overcome the problems
of integration over the singular points of the spectrum.
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Appendix A

Mathematical details

A.1 Fourier transform definition

Since there exists more then one valid definition of ’the’ Fourier Transform it is necessary
to explicitly state which definition is used in this thesis.

For the transformation pair interconnecting the vector field u in the t–x–y–z-domain
(denoted by u) and in the ω–x–y–z-domain (ū) I define

ū(x , y , z ,ω) =
1√
2π

∞∫
−∞

u(x , y , z , t) e−iωt dt

u(x , y , z , t) =
1√
2π

∞∫
−∞

ū(x , y , z ,ω) e+iωt dω.

(A.1)

To undertake 2.5D frequency-domain modelling, another transformation pair needs to
be introduced, which interconnects the ω–x–y–z-domain (ū) and the ω–x–ky–z-domain
(¯̄u)

¯̄u(x , ky , z ,ω) =
1√
2π

∞∫
−∞

ū(x , y , z ,ω) e−ikyy dy

ū(x , y , z ,ω) =
1√
2π

∞∫
−∞

¯̄u(x , ky , z ,ω) e+ikyy dky ,

(A.2)

where ky denotes the wavenumber corresponding to the cross-plane or strike coordinate
y . All other symbols are used according to their usual meaning (for details see the symbol
index on page xi). Note that an overbar on the quantity denotes Fourier transformation.
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A.2 Derivation of the elemental matrix entries for the
medium with perfectly matched layers (PMLs)

The purpose of this section is to show the steps leading from equations (3.31), (3.32)
and (3.33) to the final result for the elemental matrix entries as given in equations (3.35),
(3.36) and (3.39).

The first step is to plug the definition of the εζ (3.30) and the coordinate stretching
functions (3.34) into the matrix elements in (3.31) and the integrals in (3.33). After
restricting the integration area to that of one element, namely Ωe , and using (3.10) to
transform into local coordinates and inserting the shape functions (3.11), all that is left
to do is the evaluation of integrals involving the shape functions and their derivatives,
the local coordinates η and ξ and the coefficients given in Table 3.1.

For the elemental mass matrix entries, this leads to

M̃e
ABζζ = fζ

{
[1− AxAz − i(Ax + Az)] IAB

− iBx(1− iAz)IξAB

− iBz(1− iAx)IηAB

− BxBzIηξAB
}

(A.3)

and using the explicit results for the integrals

IξAB =

∫
Ωe

ξNANB dΩ =

[ −2 −1 0 0
−1 −2 0 0

0 0 +2 +1
0 0 +1 +2

]
∆x∆z

36 (A.4a)

IηAB =

∫
Ωe

ηNANB dΩ =

[ −2 0 −1 0
0 +2 0 +1
−1 0 −2 0

0 +1 0 +2

]
∆x∆z

36 (A.4b)

IηξAB =

∫
Ωe

ηξNANB dΩ =

[
+1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 +1

]
∆x∆z

36 (A.4c)

in (A.3) the final result given in (3.35) is achieved.
For the integrals (3.33a) and (3.33b) one finds

ĨAB
xx = [1 + AxAz + i(Ax − Az)]GAB

xx

+ iBx(1− iAz)GξAB
xx

− iBz(1 + iAx)GηAB
xx

+ BxBzGηξAB
xx

(A.5a)

ĨAB
zz = [1 + AxAz + i(Az − Ax)]GAB

zz

− iBx(1 + iAz)GξAB
zz

+ iBz(1− iAx)GηAB
zz

+ BxBzGηξAB
zz ,

(A.5b)
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where the abbreviations G have different values in the different PML zones shown in
Figure 3.2. Their general form is

GAB
xx =

∫
Ωe

1

1 + A2
x + 2AxBxξ + B2

x ξ
2
∂xNA∂xNB dΩ

=
1

2
IAB

xx Gx
1

(A.6a)

GξAB
xx =

∫
Ωe

ξ

1 + A2
x + 2AxBxξ + B2

x ξ
2
∂xNA∂xNB dΩ

=
1

2
IAB

xx

(
Gx

2 −
Ax

Bx
Gx

1

) (A.6b)

GηAB
xx =

∫
Ωe

η

1 + A2
x + 2AxBxξ + B2

x ξ
2
∂xNA∂xNB dΩ

=
1

2
IηAB

xx Gx
1

(A.6c)

GηξAB
xx =

∫
Ωe

ηξ

1 + A2
x + 2AxBxξ + B2

x ξ
2
∂xNA∂xNB dΩ

=
1

2
IηAB

xx

(
Gx

2 −
Ax

Bx
Gx

1

) (A.6d)

GAB
zz =

∫
Ωe

1

1 + A2
z + 2AzBzη + B2

z η
2
∂zNA∂zNB dΩ

=
1

2
IAB

zz Gz
1

(A.6e)

GηAB
zz =

∫
Ωe

η

1 + A2
z + 2AzBzη + B2

z η
2
∂zNA∂zNB dΩ

=
1

2
IAB

zz

(
Gz

2 −
Az

Bz
Gz

1

) (A.6f)

GξAB
zz =

∫
Ωe

ξ

1 + A2
z + 2AzBzη + B2

z η
2
∂zNA∂zNB dΩ

=
1

2
IξAB

zz Gz
1

(A.6g)

GηξAB
zz =

∫
Ωe

ηξ

1 + A2
z + 2AzBzη + B2

z η
2
∂zNA∂zNB dΩ

= IξAB
zz

(
Gz

2 −
Az

Bz
Gz

1

)
,

(A.6h)
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but in the zones T, D and B the equations involving Ax and Az reduce to

GAB
xx =

∫
Ωe

1

1 + A2
x + 2AxBxξ + B2

x ξ
2
∂xNA∂xNB dΩ

=
1

2
IAB

xx

(A.7a)

GξAB
xx =

∫
Ωe

ξ

1 + A2
x + 2AxBxξ + B2

x ξ
2
∂xNA∂xNB dΩ

= 0

(A.7b)

GηAB
xx =

∫
Ωe

η

1 + A2
x + 2AxBxξ + B2

x ξ
2
∂xNA∂xNB dΩ

=
1

2
IηAB

xx

(A.7c)

GηξAB
xx =

∫
Ωe

ηξ

1 + A2
x + 2AxBxξ + B2

x ξ
2
∂xNA∂xNB dΩ

= 0

(A.7d)

whereas in the zones L, D and R the equations involving Az and Bz become

GAB
zz =

∫
Ωe

1

1 + A2
z + 2AzBzη + B2

z η
2
∂zNA∂zNB dΩ

=
1

2
IAB

zz

(A.8a)

GηAB
zz =

∫
Ωe

η

1 + A2
z + 2AzBzη + B2

z η
2
∂zNA∂zNB dΩ

= 0

(A.8b)

GξAB
zz =

∫
Ωe

ξ

1 + A2
z + 2AzBzη + B2

z η
2
∂zNA∂zNB dΩ

=
1

2
IξAB

zz

(A.8c)

GηξAB
zz =

∫
Ωe

ηξ

1 + A2
z + 2AzBzη + B2

z η
2
∂zNA∂zNB dΩ

= 0,

(A.8d)
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while all other terms remain as given in (A.6). The abbreviations introduced there are

G i
1 =

1∫
−1

dζ

1 + A2
i + 2AiBiζ + B2

i ζ
2

G i
2 =

1∫
−1

ζ

1 + A2
i + 2AiBiζ + B2

i ζ
2

dζ

+
Ai

Bi

1∫
−1

dζ

1 + A2
i + 2AiBiζ + B2

i ζ
2

(A.9a)

and the result of these integrals can be found in equation (3.38). Inserting all this into
equations (3.32a), (3.32b) and (3.32c) leads to the final result given in (3.36).

The remaining expressions for the elemental stiffness matrix entries are obtained by
evaluating the integrals (3.33c) to (3.33f) which yields

ĨAB
xy = (1− iAz)IAB

xy − iBzIηAB
xy

ĨAB
yx = (1− iAz)IAB

yx − iBzIηAB
yx

ĨAB
yz = (1− iAx)IAB

yz − iBxIξAB
yz

ĨAB
zy = (1− iAx)IAB

zy − iBxIξAB
zy ;

(A.10)

using (3.22) and

IηAB
xy =

∫
Ωe

η∂xNANB dΩ =

[
+1 0 +1 0

0 −1 0 −1
−1 0 −1 0

0 +1 0 +1

]
∆z

12 (A.11a)

IηAB
yx =

∫
Ωe

ηNA∂xNB dΩ =

[
+1 0 −1 0

0 −1 0 +1
+1 0 −1 0

0 −1 0 +1

]
∆z

12 (A.11b)

IξAB
yz =

∫
Ωe

ξNA∂zNB dΩ =

[
+1 −1 0 0
+1 −1 0 0

0 0 −1 +1
0 0 −1 +1

]
∆x

12 (A.11c)

IξAB
zy =

∫
Ωe

ξ∂zNANB dΩ =

[
+1 +1 0 0
−1 −1 0 0

0 0 −1 −1
0 0 +1 +1

]
∆x

12 (A.11d)

IηAB
xx =

∫
Ωe

η∂xNA∂xNB dΩ =

[ −1 0 +1 0
0 +1 0 −1

+1 0 −1 0
0 −1 0 +1

]
∆z

6∆x (A.11e)

IξAB
zz =

∫
Ωe

ξ∂zNA∂zNB dΩ =

[ −1 +1 0 0
+1 −1 0 0

0 0 +1 −1
0 0 −1 +1

]
∆x

6∆z
. (A.11f)

and inserting these results in equations (3.32d) to (3.32i) leads to the final expressions
for the elemental stiffness matrix entries as given in (3.39).
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A.3 2.5D FEM solution symmetries
with respect to ky

The starting point for the investigation of the symmetry properties of the 2.5D FEM
solution with respect to ky is the FEM matrix equation

SU + F = 0, (3.47)

where S is the complete system matrix as defined in equation (3.45), U and F is the
source vector as introduced in Appendix B.

To examine the behaviour of the solution for all possible combinations of source di-
rection and receiver component at once, I expand equation (3.47) to the matrix equation

SG + F = 0, (A.12)

where

G :=

Gxx Gzx Gyx

Gzx Gzz Gyz

Gyx Gzy Gyy

 and F :=

Fx 0 0

0 Fz 0

0 0 Fy

 (A.13)

are the FEM Green’s tensor and a matrix combining source vectors into the three coor-
dinate directions. That is,

U =

Gxx

Gxz

Gxy

 , U =

Gzx

Gzz

Gzy

 and U =

Gyx

Gyz

Gyy

 (A.14)

are the solutions of (3.47) for the source vectors

F =

Fx

0

0

 , F =

 0

Fz

0

 and F =

 0

0

Fy

 . (A.15)

For a FEM grid consisting of n nodes, S is of size 3n×3n and G and F are of size 3n×3.
To examine the symmetry, I write equation (A.12) for +ky and −ky ,

S+G+ + F = 0

S−G− + F = 0,
(A.16)

defining S+ := S (+ky ) and S− = S (−ky ). Closer inspection of the equations for the
matrix elements, (3.35) (3.36) and (3.39), reveals the relations

S+
ii = S−ii for i ∈ {x , y , z}

S+
ij = S−ij for ij ∈ {xz , zx}

S+
ij = −S−ij for ij ∈ {xy , zy , yx , yz}.

(A.17)

The 3n × 3n matrix

L :=

 I 0 0
0 I 0
0 0 −I

 with L = L−1, (A.18)
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where I is the n×n unit or identity matrix, relates S+ and S− via S− = LS+L. Inserting
this into the second equation of (A.16) leads to

LS+LG− + F = 0

⇔ S+LG− + LF = 0

⇔ S+LG−L + LFL = 0

⇔ S+LG−L + F = 0,

(A.19)

where I used LFL = F for the last equivalence. This means G+ = LG−L, that is the solu-
tion components Gxx , Gzz , Gyy , Gxz and Gzx are symmetric in ky while the components
Gxy , Gyx , Gzy and Gyz are antisymmetric in ky . Thus, once the particular combination
if source and receiver is specified, only the spectra for the positive wavenumbers need
to be computed. The spectra for negative wavenumber values are determined from the
odd or even symmetry.
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Appendix B

Assembly of the complete finite
element system matrix - from local
to global

With the matrix entries given in equations (3.35), (3.36) and (3.39), the 12×12 elemental
matrices defined in (3.18a) and (3.19a) are completely known, such that all that is left
to do is to assemble them into the complete system matrix S, defined in equation (3.45),
to establish the global matrix equation (3.47) viz.

SU + F = 0, (B.1)

which is the global version of the elemental equation 3.15.
Each row and each column of the sub-matrices Sζυ with ζ, υ ∈ {x , y , z} (see equation

(3.45)) corresponds to one model node. To find out where in this matrix the elemental
matrix entries have to be placed, the correspondence between the global shape functions,
defined on the global grid, and the shape functions defined locally by (3.11) on the
corner nodes of the individual elements have to be found. For the example grid, these
correspondences are shown in Figure B.1. Three different types of nodes need to be
differentiated. Corner nodes (N1, N4, N13 and N16 in Figure B.1) belong to only one
element, edge nodes (nodes N2, N3, N5, N8, N9, N12, N14 and N15 in Figure B.1) take
part in two different elements and interior nodes (nodes N6, N7, N10 and N11 in Figure
B.1) are shared by four different elements. The global shape functions for corner nodes
thus each correspond to one local shape function of one element. The global shape
functions associated with edge nodes each correspond to one local shape function of
each of the two adjacent elements. The global shape functions of the interior nodes
each correspond to one local shape function of each of the four elements adjacent to the
node. These equalities between the local and global shape functions define a mapping
between local and global node indices. Since only neighbouring nodes interact, the
majority of elements inside the global matrix S is zero.

Starting from a matrix of all zeros, S is assembled by performing the following steps
for all elements:

(1) Find the global indices i, j, k, and l of the corner nodes I, J, K, and L.

(2) Add each of the 16 matrix entries of each of the nine sub-matrices of the elemental
matrix (see equations 3.18a, 3.19a and 3.46) to the corresponding entry of the
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Figure B.1: Example of a FEM grid consisting of three by three elements and 16 nodes.
The nodes are ordered in column major order and for each node the correspondence
between the globally defined shape functions Ni and the local shape functions N

ej

A is
shown, where i ∈ [1, 16] is the global node index, j ∈ [1, 9] is the element index and
A ∈ {I , J , K , L} is the local node index relative to the respective elements.

corresponding sub-matrix of the global matrix (see equation 3.45). The component
Se

IJxz of the elemental matrix for example has to be added to the entry Sijxz of the
global matrix.

To illustrate the structure of the resulting matrix, I zoom into a group of four adjacent
elements, located in the interior of the FEM grid. The upper left corner of the top left
element of this element group is located at global node i , as it is sketched in Figure B.2a.
A snippet of one of the n×n sub-matrices, showing the rows and columns corresponding
to the grid nodes shown in B.2a, can be found in Figure B.3. Using the colours introduced
in Figure B.2, it shows which elemental matrix entries of the four elements contribute
to which of the nonzero elements (depicted as black frames) of the global matrix. The
entries in the main diagonal of the global matrix are the sum of four elemental matrix
entries of four different elements. Two different elemental matrix entries contribute to
the global matrix entries located in the diagonals Si ,i−nz , Si ,i−1 Si ,i+1 and Si ,i+nz . The
entries in the four diagonals Si ,i−nz−1, Si ,i−nz+1, Si ,i+nz−1 and Si ,i+nz+1 consist of only
one elemental matrix entry each, with the remaining elements of the sub-matrix being
zero.
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Figure B.2: Zoom into four elements of a FEM grid. The elements are colour coded
to demonstrate the location of the corresponding elemental matrix entries in the global
matrix in Figure B.3. (a) shows the global node indices of these elements in the FEM
grid. The upper left corner of the element group is node i , the lower right corner lies
at node i + 2nz + 2. (b) depicts the local node indices I , J , K and L of the respective
elements shown in (a).

As stated before, Figures B.2 and B.3 show the situation for four elements that
belong to the interior of the FEM grid. Since nodes at the edges and corners of the
grid have only three or two respective nearest neighbours the rows and columns of S
corresponding to such nodes have only six or four respective nonzero entries instead of
nine.
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Figure B.3: Location of the elemental matrix entries in one of the n × n sub-matrices
of the complete system matrix for the four elements shown in Figure B.2. The rows
and columns of the matrix are indicated by dashed lines, each annotated with its cor-
responding global node index (see Figure B.2a). The nonzero elements of the matrix
are shown as black frames, each containing the local node indices (see Figure B.2b) of
the elemental matrix entries that contribute to the actual global entry. Coloured entries
indicate which local node of which of the four elements shown in Figure B.2 corresponds
to the given global matrix entry.
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Appendix C

Time harmonic analytic Green’s
functions for a homogeneous
isotropic unbounded domain

C.1 Acoustic approximation

The relevant equation of motion considered when solving under the acoustic approxima-
tion is the scalar Helmholtz equation

∇2G (x; xs) + k2
PG (x; xs) = −δ (x− xs) , (C.1)

where G (x; xs) is the Green’s function for a source at xs , kP = ω/vP is the wavenumber
of a wave travelling with longitudinal wave velocity vP . and ω = 2πf is the angular
frequency.

C.1.1 Green’s function for a homogeneous isotropic unbounded
domain in the acoustic approximation in 2D

In 2D, the Green’s function which solves (C.1) when restricting to waves travelling
outward from the source position xs , is (see Achenbach, 1984, equation (3.155))

G (r) =
i

4
H

(2)
0 (kPr) , (C.2)

where H
(2)
0 is the Hankel function of the second kind and zeroth order, i =

√−1 is
the imaginary unit and r = |x− xs | is the distance to the source point. (C.2) is also
the solution for a line source in a 3D medium when r is taken to be the perpendicular
distance to the infinite line sources (in y direction).
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C.1.2 Green’s function for a homogeneous isotropic unbounded
domain in the acoustic approximation in 3D

In 3D, the Green’s function which solves (C.1), also restricted to waves travelling outward
from the source position xs is (see Achenbach, 1984, equation (3.147))

G (r) =
1

4πr
e−ikP r . (C.3)

with i =
√−1 and r defined as in (C.2).

C.2 Elastic Green’s tensor

To account for the vector character of the displacement field and the directivity of the
source, in the elastic case the scalar Green’s function is replaced by a second rank Green’s
tensor G with components

Gij (x; xs) , (C.4)

where i denotes the source direction, j the vector component of the displacement field
and xs again denotes the source location.

C.2.1 Green’s tensor for a homogeneous isotropic elastic un-
bounded domain in 2D

In the two-dimensional case, (C.4) is the solution for equations (3.2) with ky ≡ 0, source
vector f = êiδ (x− xs) and i , j ∈ {x , z}. The expressions for the tensor components
corresponding to a vertically directed source, i.e. those with z as the first subscript on
G , are

Gzx =
∂φz

∂x
+
∂ψz

∂z

Gzz =
∂φz

∂z
+
∂ψz

∂x

with

φz = − Q

4ρω2

∂

∂z

[
−iH

(2)
0 (kPr)

]
ψz =

Q

4ρω2

∂

∂x

[
−iH

(2)
0 (kS r)

], (C.5)

as given by Båth (1968) in Chapter 12, equations [3] and [33]. Here, kP = ω/vP and
kS = ω/vS are the wavenumbers corresponding to the P- and S-waves, ρ is the density,

r = |x− xs | is the distance from the source, Q is a constant and H
(2)
0 is again the Hankel

function of the second kind and zeroth order. For the tensor components corresponding
to a horizontally directed source, i.e. those with x as the first subscript on G , one obtains

Gxx =
∂φx

∂x
+
∂ψx

∂z

Gxz =
∂φx

∂z
+
∂ψx

∂x

with

φx = − Q

4ρω2

∂

∂x

[
−iH

(2)
0 (kPr)

]
ψx = − Q

4ρω2

∂

∂z

[
−iH

(2)
0 (kS r)

], (C.6)

following the derivation of (C.5) in Båth (1968), section 12.1.2.
Explicit expressions for the derivatives in equations (C.5) and (C.6) are

∂φx

∂x
= −i

Q

4ρω2

x2

r 2

{
k2

PH
(2)
0 (kPr)− kPr

(
2

r 2
− 1

x2

)
H

(2)
1 (kPr)

}
(C.7a)
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∂φx

∂z
= −i

Q

4ρω2

xz

r 2

{
k2

PH
(2)
0 (kPr)− kP

2

r
H

(2)
1 (kPr)

}
(C.7b)

∂ψx

∂x
= −i

Q

4ρω2

xz

r 2

{
k2

SH
(2)
0 (kS r)− kS

2

r
H

(2)
1 (kS r)

}
(C.7c)

∂ψx

∂z
= −i

Q

4ρω2

x2

r 2

{
k2

SH
(2)
0 (kS r)− kS r

(
2

r 2
− 1

z2

)
H

(2)
1 (kS r)

}
(C.7d)

and

∂φx

∂x
= −i

Q

4ρω2

xz

r 2

{
k2

PH
(2)
0 (kPr)− kP

2

r
H

(2)
1 (kPr)

}
(C.7e)

∂φx

∂z
= −i

Q

4ρω2

z2

r 2

{
k2

PH
(2)
0 (kPr)− kPr

(
2

r 2
− 1

z2

)
H

(2)
1 (kPr)

}
(C.7f)

∂ψx

∂x
= i

Q

4ρω2

z2

r 2

{
k2

SH
(2)
0 (kS r)− kS r

(
2

r 2
− 1

z2

)
H

(2)
1 (kS r)

}
(C.7g)

∂ψx

∂z
= i

Q

4ρω2

xz

r 2

{
k2

SH
(2)
0 (kS r)− kS

2

r
H

(2)
1 (kS r)

}
. (C.7h)

Note that by introducing the dimensionless variables r̂ := r/λS , x̂ := x/λS and ẑ := z/λS ,
where λS = 2π/kS , the Gij defined in equations (C.5) and (C.6) become frequency-
independent (the frequency dependence is implicitly retained through the frequency de-
pendent r̂ , x̂ and ẑ).

The terms in equation (C.7) are discontinuous at r = 0; their real parts go to infinity
at this point but the discontinuity is removable in the case of the imaginary parts and
one finds

lim
r→0

Im

(
∂φx

∂x

)
=

Qk2
P

4ρω2

k2
Px2 − 4

8

lim
r→0

Im

(
∂φx

∂z

)
=

Q

4ρω2

k4
Pxz

8

lim
r→0

Im

(
∂ψx

∂x

)
=

Q

4ρω2

k4
Sxz

8

lim
r→0

Im

(
∂ψx

∂z

)
=

Qk2
S

4ρω2

k2
Sz2 − 4

8

and

lim
r→0

Im

(
∂φx

∂x

)
=

Q

4ρω2

k4
Pxz

8

lim
r→0

Im

(
∂φx

∂z

)
=

Qk2
P

4ρω2

k2
Pz2 − 4

8

lim
r→0

Im

(
∂ψx

∂x

)
= − Qk2

S

4ρω2

k2
Sx2 − 4

8

lim
r→0

Im

(
∂ψx

∂z

)
= − Q

4ρω2

k4
Sxz

8
.

(C.8)

C.2.2 Green’s tensor for a homogeneous isotropic elastic un-
bounded domain in 2.5D

The solutions for equations (3.2) for general ky and source vectors of the form f =
1√
2π

f (ω)δ(x − xs)δ(z − zs)e−ikyys êi are the components of the Green’s tensor in 2.5D.

Explicit expressions are given by Tadeu and Kausel (2000). Adapting them to my situa-
tion, that is a Fourier transform with respect to y instead of z and using the definition
given in (A.2), leads to

Gxx = −i
Q̄

4ρω2

{
k2

SH
(2)
0 (kβr)− 1

r
B1 + γ2

x B2

}
(C.9a)
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Gzz = −i
Q̄

4ρω2

{
k2

SH
(2)
0 (kβr)− 1

r
B1 + γ2

z B2

}
(C.9b)

Gyy = −i
Q̄

4ρω2

{
k2

SH
(2)
0 (kβr)− k2

y B0

}
(C.9c)

Gxy = Gyx = i
Q̄

4ρω2
{ikyγxB1} (C.9d)

Gzy = Gyz = i
Q̄

4ρω2
{ikyγzB1} (C.9e)

Gxz = Gzx = −i
Q̄

4ρω2
{γxγzB2} , (C.9f)

where
γx =

x

r
and γz =

z

r
(C.10)

are the direction cosines. I have introduced the definitions

Bn := kn
βH (2)

n (kβr)− kn
αH (2)

n (kαr) , n ∈ {0, 1, 2}. (C.11)

The modified wavenumbers kα and kβ are defined as

kα :=
√

k2
P − k2

y and kβ :=
√

k2
S − k2

y (C.12)

using the branch Im (kα,β) < 0 with negative imaginary part. For ky ≡ 0, the Gxj and
Gzj for j ∈ {x , z} in equations (C.9) reduce to the terms given in equations (C.6) and
(C.5), respectively, with Q̄ = Q/

√
2π to take account for the different source terms.

To aid the analysis of the behaviour with respect to ky of the tensor components
given in equations (C.9), I split them up into two parts. The first part, representing the
P-wave, is given by

G P
xx = −i

Q̄

4ρω2

{
kα
r

H
(2)
1 (kαr)− γ2

x k2
αH

(2)
2 (kαr)

}
(C.13a)

G P
zz = −i

Q̄

4ρω2

{
kα
r

H
(2)
1 (kαr)− γ2

z k2
αH

(2)
2 (kαr)

}
(C.13b)

G P
yy = −i

Q̄

4ρω2

{
k2

y H
(2)
0 (kαr)

}
(C.13c)

G P
xy = G P

yx =
Q̄

4ρω2
kyγxkαH

(2)
1 (kαr) (C.13d)

G P
zy = G P

yz =
Q̄

4ρω2
kyγzkαH

(2)
1 (kαr) (C.13e)

G P
xz = G P

zx = i
Q̄

4ρω2
γxγzk2

αH
(2)
2 (kαr) (C.13f)

and the second part, representing the S-wave, is given by

G S
xx = −i

Q̄

4ρω2

{
k2

SH
(2)
0 (kβr)− kβ

r
H

(2)
1 (kβr) + γ2

x k2
βH

(2)
2 (kβr)

}
(C.14a)
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G S
zz = −i

Q̄

4ρω2

{
k2

SH
(2)
0 (kβr)− kβ

r
H

(2)
1 (kβr) + γ2

z k2
βH

(2)
2 (kβr)

}
(C.14b)

G S
yy = −i

Q̄

4ρω2

{
k2

SH
(2)
0 (kβr)− k2

y H
(2)
0 (kβr)

}
(C.14c)

G S
xy = G S

yx = − Q̄

4ρω2
kyγxkβH

(2)
1 (kβr) (C.14d)

G S
zy = G S

yz = − Q̄

4ρω2
kyγzkβH

(2)
1 (kβr) (C.14e)

G S
xz = G S

zx = −i
Q̄

4ρω2
γxγzk2

βH
(2)
2 (kβr) (C.14f)

The tensor components in equations (C.9), (C.13) and (C.14) are related by Gij =
G P

ij + G S
ij for i , j ∈ {x , y , z}.

C.2.3 Green’s tensor for a homogeneous isotropic elastic un-
bounded domain in 3D

The Green’s tensor in a three-dimensional medium can be written in the frequency domain
as (e.g. Aki and Richards, 2009, equation (4.35))

Gij =
Q̄

4πρ

{ e
− iωr

vP

v 2
Pr

[
γiγj + (3γiγj − δij)

(
vP

iωr
+
( vP

iωr

)2
)]

︸ ︷︷ ︸
P-wave

− e
− iωr

vS

v 2
S r

[
γiγj + (3γiγj − δij)

(
vS

iωr
+
( vS

iωr

)2
)]

︸ ︷︷ ︸
S-wave

}
,

(C.15)

with i , j ∈ {x , y , z} and the γi defined as given in equation (C.10), which is the solution
for (3.1) for the source term f = êiδ (x− xs).
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Appendix D

Gauss Newton type iterative local
optimisation algorithms

Greenhalgh et al. (2006) give a very good overview of different local optimisation schemes
used by the geophysical community and how these algorithms are related to each other;
based on this overview and the ideas about model resolution presented in Ory and Pratt
(1995), I will give a short summary of Gauss-Newton type local optimisation algorithms
and how the corresponding model resolution capability can be assessed.

D.1 Norm definitions

Define the norm of the data space D for d ∈ D as

‖d‖D := dT WT
DWD︸ ︷︷ ︸
ŴD

d (D.1)

with data weighting operator ŴD and the norm of the model space M for m ∈M as

‖m‖M := mT WT
MWM︸ ︷︷ ︸
ŴM

m (D.2)

with model parameter weighting operator ŴM .

D.2 Different guises of the Gauss-Newton Algorithm

Our goal is to find a set of model parameters m that minimises

‖d0 − d (m)‖D + λ‖m−m0‖M (D.3a)

or

‖d0 − d (m)‖D + λ‖m‖M . (D.3b)
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Using the objective function (D.3a) tied to an apriori model m0 we find four possi-
bilities for iteration schemes, which can be written as

mk+1 = m0 +
[
Ŵ
−1

M JkT
ŴDJk + λ1

]−1

Ŵ
−1

M JkT
ŴD

[
d0 − d

(
mk
)

+ Jk
(
mk −m0

)] (D.4a)

mk+1 = m0 +
[
JkT

ŴDJk + λŴM

]−1

JkT
ŴD

[
d0 − d

(
mk
)

+ Jk
(
mk −m0

)] (D.4b)

mk+1 = mk +
[
Ŵ
−1

M JkT
ŴDJk + λ1

]−1

{
Ŵ
−1

M JkT
ŴD

[
d0 − d

(
mk
)]

+ λ
(
mk −m0

)} (D.4c)

mk+1 = mk +
[
JkT

ŴDJk + λŴM

]−1

{
JkT

ŴD

[
d0 − d

(
mk
)]

+ λŴM

(
mk −m0

)}
.

(D.4d)

If we do not require that the solution be close to an à priori model m0 then we use
(D.3b) and find

mk+1 =
[
Ŵ
−1

M JkT
ŴDJk + λ1

]−1

Ŵ
−1

M JkT
ŴD

[
d0 − d

(
mk
)

+ Jkmk
] (D.5a)

mk+1 =
[
JkT

ŴDJk + λŴM

]−1

JkT
ŴD

[
d0 − d

(
mk
)

+ Jkmk
] (D.5b)

mk+1 = mk +
[
Ŵ
−1

M JkT
ŴDJk + λ1

]−1

{
Ŵ
−1

M JkT
ŴD

[
d0 − d

(
mk
)]

+ λmk
} (D.5c)

mk+1 = mk +
[
JkT

ŴDJk + λŴM

]−1

{
JkT

ŴD

[
d0 − d

(
mk
)]

+ λŴMmk
}

.
(D.5d)

D.3 Model resolution

If we assume there is a true model mtrue such that d0 = d (mtrue) and set mk = mtrue in
(D.4) we find for the model mest estimated by the algorithm

δmest =
[
Ŵ
−1

M JkT
ŴDJk + λ1

]−1

Ŵ
−1

M JkT
ŴDJkδmtrue (D.6a)

δmest =
[
JkT

ŴDJk + λŴM

]−1

JkT
ŴDJkδmtrue, (D.6b)
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where we define δmest = mest − m0 and δmtrue = mtrue − m0. If instead we use (D.5),
we get

mest =
[
Ŵ
−1

M JkT
ŴDJk + λ1

]−1

Ŵ
−1

M JkT
ŴDJkmtrue (D.7a)

mest =
[
JkT

ŴDJk + λŴM

]−1

JkT
ŴDJkmtrue (D.7b)

for the model estimated from the true model.
Equations (D.6) and (D.7) can be abbreviated as

δmest = RMδmtrue

mest = RMmtrue,
(D.8)

which defines the model resolution matrix RM . It relates the true model and the esti-
mated model that our algorithm would return given the true model as an input.

From equations (D.6a) and (D.7a) we find

RM =
[
Ŵ
−1

M JkT
ŴDJk + λ1

]−1

Ŵ
−1

M JkT
ŴDJk . (D.9)

Alternatively, from equations (D.6b) and (D.7b) we find

RM =
[
JkT

ŴDJk + λŴM

]−1

JkT
ŴDJk . (D.10)

Using a matrix formula called the Sherman-Morrison-Woodbury formula (see Golub
and van Loan, 1996, page 50 formula (2.1.4)), we have(

UVT + A
)−1

= A−1 −
[
A−1U

(
1 + VT A−1U

)−1
VT A−1

]
(D.11)

we can reconcile this issue. Since (D.9) and (D.10) match in the last three factors

JkT
ŴDJk , we only have to prove the equality of the first parts. We find(
JkT

ŴDJk + λŴM

)−1

=
1

λ

1

λ
JkT︸ ︷︷ ︸
U

ŴDJk︸ ︷︷ ︸
VT

+ ŴM︸︷︷︸
A


−1

(D.11)
=

1

λ

{
Ŵ
−1

M −
[

Ŵ
−1

M

1

λ
JkT

(
1 + ŴDJkŴ

−1

M

1

λ
JkT
)−1

ŴDJkŴ
−1

M

]}

=
1

λ

{
1−

[
Ŵ
−1

M

1

λ
JkT

(
1 + ŴDJkŴ

−1

M

1

λ
JkT
)−1

ŴDJk

]}
Ŵ
−1

M

=

(λ1)−1︸ ︷︷ ︸
A−1

−
(λ1)−1 Ŵ

−1

M JkT︸ ︷︷ ︸
U

(
1 + ŴDJk (λ1)−1 Ŵ

−1

M JkT
)−1

ŴDJk︸ ︷︷ ︸
VT

 Ŵ
−1

M

(D.11)
=

(
Ŵ
−1

M JkT
ŴDJk + λ1

)−1

Ŵ
−1

M .

(D.12)
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Having established the equivalence, we will use

RM =
[
JkT

ŴDJk + λŴM

]−1

JkT
ŴDJk . (D.13)

since it is the more compact form.
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Appendix E

Relation between sensitivities for
different sets of parameters

E.1 Parameter sets in the elastic case

Some examples for parameter sets that are used in seismic waveform inversion are

SET 1 (vP , vS , ρ),

SET 2 (λ,µ, ρ) or

SET 3 (µ,κ, ρ),

or in words

SET 1 P-wave-velocity, S-wave velocity and density,

SET 2 Lamé parameters and density,

SET 3 Second Lamé parameter, compressibility modulus and density.

These parameter sets are linked by the relations (e.g. Smidt, 2009)

SET 1 SET 2 SET 3
(vP , vS , ρ) (λ,µ, ρ) (µ,κ, ρ)

vP •
√

λ+2µ
ρ

√
κ+ 4

3
µ

ρ

vS •
√

µ
ρ

√
µ
ρ

λ ρ (v 2
P − 2v 2

S) • κ− 2
3
µ

µ ρv 2
S • •

κ ρ
(
v 2
P − 4

3
v 2
S

)
λ + 2

3
µ •

(E.1)
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E.2 Partial derivatives

E.2.1 SET 1 with respect to SET 2

∂vP

∂λ
=

1

2

1√
ρ(λ + 2µ)

=
1

2ρvP
(E.2a)

∂vP

∂µ
=

1√
ρ(λ + 2µ)

=
1

ρvP
(E.2b)

∂vP

∂ρ
=

1

2ρ

√
λ + 2µ

ρ
=

vP

2ρ
(E.2c)

∂vS

∂λ
= 0 (E.2d)

∂vS

∂µ
=

1

2

1√
ρµ

=
1

2ρvS
(E.2e)

∂vS

∂ρ
=

1

2ρ

√
µ

ρ
=

vS

2ρ
(E.2f)

E.2.2 SET 2 with respect to SET 1

∂λ

∂vP
= 2ρvP = 2

√
ρ(λ + 2µ) (E.3a)

∂λ

∂vS
= −4ρvS = −4

√
ρµ (E.3b)

∂λ

∂ρ
= v 2

P − 2v 2
S =

λ

ρ
(E.3c)

∂µ

∂vP
= 0 (E.3d)

∂µ

∂vS
= 2ρvS = 2

√
ρµ (E.3e)

∂µ

∂ρ
= v 2

S =
µ

ρ
(E.3f)
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E.2.3 SET 1 with respect to SET 3

∂vP

∂κ
=

1

2

1√
ρ(κ + 4

3
µ)

=
1

2ρvP
(E.4a)

∂vP

∂µ
=

2

3

1√
ρ(κ + 4

3
µ)

=
2

3ρvP
(E.4b)

∂vP

∂ρ
=

1

2ρ

√
κ + 4

3
µ

ρ
=

vP

2ρ
(E.4c)

∂vS

∂κ
= 0 (E.4d)

∂vS

∂µ
=

1

2

1√
ρµ

=
1

2ρvS
(E.4e)

∂vS

∂ρ
=

1

2ρ

√
µ

ρ
=

vS

2ρ
(E.4f)

E.2.4 SET 3 with respect to SET 1

∂κ

∂vP
= 2ρvP = 2

√
ρ(κ +

4

3
µ) (E.5a)

∂κ

∂vS
= −8

3
ρvS = −8

3

√
ρµ (E.5b)

∂κ

∂ρ
= v 2

P −
4

3
v 2
S =

κ

ρ
(E.5c)

∂µ

∂vP
= 0 (E.5d)

∂µ

∂vS
= 2ρvS = 2

√
ρµ (E.5e)

∂µ

∂ρ
= v 2

S =
µ

ρ
(E.5f)

E.2.5 Interrelating SET 2 with SET 3

∂λ

∂κ
= 1

∂λ

∂µ
= −2

3

∂λ

∂ρ
= 0 (E.6)

∂κ

∂λ
= 1

∂κ

∂µ
=

2

3

∂κ

∂ρ
= 0 (E.7)

E.3 Relations between small perturbations

Considering small perturbations of the medium parameters, i.e. (δvP , δvS , δρ), (δλ, δµ, δρ)
and (δµ, δκ, δρ) respectively, and remembering the interrelations of the different param-
eter sets given in (E.1), one can see how the parameters in the other sets change due



150 E.4 Relations between sensitivities

to perturbation of one certain parameter in another set. If terms of second and higher
order in the perturbations are neglected, the perturbations are related via the following
equations.

δvP =
∂vP

∂λ
δλ +

∂vP

∂µ
δµ +

∂vP

∂ρ
δρ

δvS =
∂vS

∂µ
δµ +

∂vS

∂ρ
δρ

 SET 2→ SET 1 (E.8a)

δvP =
∂vP

∂µ
δµ +

∂vP

∂κ
δκ +

∂vP

∂ρ
δρ

δvS =
∂vS

∂µ
δµ +

∂vS

∂ρ
δρ

 SET 3→ SET 1 (E.8b)

δκ =
∂κ

∂vP
δvP +

∂κ

∂vS
δvS +

∂κ

∂ρ
δρ

δµ =
∂µ

∂vS
δvS +

∂µ

∂ρ
δρ.

 SET 1→ SET 3 (E.8c)

δλ =
∂λ

∂vP
δvP +

∂λ

∂vS
δvS +

∂λ

∂ρ
δρ

δµ =
∂µ

∂vS
δvS +

∂µ

∂ρ
δρ.

 SET 1→ SET 2 (E.8d)

δκ =
∂κ

∂µ
δµ +

∂κ

∂λ
δλ +

∂κ

∂ρ
δρ

δλ =
∂λ

∂µ
δµ +

∂λ

∂κ
δκ +

∂λ

∂ρ
δρ

 SET 2↔ SET 3 (E.8e)

E.4 Relations between sensitivities

After defining

D
I

ξ +
∂u

∂ξ
I ∈ {1, 2, 3} (E.9)

as a shorthand notation for the sensitivity of wave field component u with respect to
parameter ξ belonging to SET I, the sensitivities with respect to parameters of the three
sets have to fulfil the conditions

D
1

vPδvP + D
1

vSδvS + D
1

ρδρ
!

= D
2

λδλ + D
2

µδµ + D
2

ρδρ (E.10a)

D
1

vPδvP + D
1

vSδvS + D
1

ρδρ
!

= D
3

κδκ + D
3

µδµ + D
3

ρδρ (E.10b)

D
2

λδλ + D
2

µδµ + D
2

ρδρ
!

= D
3

κδκ + D
3

µδµ + D
3

ρδρ. (E.10c)
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Inserting (E.8) in (E.10) leads to

D
1

vP =
∂λ

∂vP
D
2

λ

D
1

vS =
∂λ

∂vS
D
2

λ +
∂µ

∂vS
D
2

µ

D
1

ρ =
∂λ

∂ρ
D
2

λ +
∂µ

∂ρ
D
2

µ + D
2

ρ

(E.11)

D
2

λ =
∂vP

∂λ
D
1

vP

D
2

µ =
∂vP

∂µ
D
1

vP +
∂vS

∂µ
D
1

µ

D
2

ρ =
∂vP

∂ρ
D
1

vP +
∂vS

∂ρ
D
1

µ + D
1

ρ

(E.12)

D
1

vP =
∂κ

∂vP
D
3

κ

D
1

vS =
∂κ

∂vS
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Appendix F

Frequency and spatial sampling
strategies for crosshole seismic
waveform spectral inversion
experiments

Hansruedi Maurer, Stewart Greenhalgh, Sabine Latzel

GEOPHYSICS,VOL. 74, NO. 6 NOVEMBER-DECEMBER 2009; P.WCC11WCC21

Abstract

Analyses of synthetic frequency-domain acoustic waveform data provide new insights into
the design and imaging capability of crosshole surveys. We show that the full complex
Fourier spectral data offer significantly more information than other data representations
such as the amplitude, phase or Hartley spectrum. By means of extensive eigenvalue
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analyses we further inspect the information content offered by the seismic data. The
goodness of different experimental configurations is investigated by varying the choice
of (i) the frequencies, (ii) the source and receiver spacings along the boreholes, and
(iii) the borehole separation. It is demonstrated that with only a few carefully chosen
frequencies a similar amount of information can be extracted from the seismic data as
with a much larger suite of equally spaced frequencies. Optimized data sets should
include at least one very low frequency component. The remaining frequencies should
be chosen from the upper end of the spectrum available. This strategy proved to be
applicable to a simple homogeneous and a very complex velocity model. Further tests are
required, but it appears on the available evidence to be model-independent. Source and
receiver spacings also have an effect on the goodness of an experimental setup, but we
show that there are only minor benefits to denser sampling when the increment is much
smaller than the shortest wavelength included in a data set. If the borehole separation
becomes unfavorably large, the information content of the data is degraded, even when
many frequencies and small source and receiver spacings are considered. Our findings
are based on eigenvalue analyses using the true velocity models. Since under realistic
conditions the true model is not known, we demonstrate that the optimized data sets
are sufficiently robust, such that they allow the iterative inversion schemes to converge
to the global minimum. This is demonstrated by means of tomographic inversions of
several optimized data sets.

Introduction

Seismic tomography is a powerful and versatile tool for a wide range of imaging appli-
cations in the earth sciences. Crosshole techniques are of particular interest for shallow
and intermediate target depths. So far, the vast majority of applications reported in
the literature have considered ray-based methods, in which arrival times and possibly
amplitudes have been inverted for subsurface velocity and attenuation parameters (e.g.
Lehmann, 2007, and references therein).

In the middle 1980s, full waveform inversion schemes that exploit the full informa-
tion content offered by the seismic data were devised (e.g. Tarantola, 1984; Mora, 1987).
Unfortunately, the computing resources at that time did not allow these time-domain
schemes to be applied to realistic problems. To ease the computational burden, a num-
ber of frequency-domain inversion schemes were proposed (e.g. Pratt, 1999; Zhou and
Greenhalgh, 2003; Greenhalgh and Zhou, 2004). They considered only a few frequencies
during the inversions. This approach provided tomographic images that were comparable
to their time-domain counterparts, but at substantially lower computational costs. The
success of frequency-domain inversions is primarily based on the fact that most seismic
data are band-limited, such that only a limited number of frequencies are required for
characterizing the entire waveforms.

During the course of the seemingly continuously increasing computing power, partic-
ularly through the availability of affordable computer clusters, both time- and frequency-
domain waveform inversion schemes experienced a rapid increase in popularity over the
past few years. The recent literature includes a plethora of synthetic studies (e.g. Plessix,
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2008, and references therein), and it is expected that the number of publications on ap-
plications to field data will increase in the near future.

The numerous synthetic studies have demonstrated quite impressively the general
superiority of waveform inversions over ray-based traveltime inversions, but less attention
has been paid so far to optimized survey designs of waveform inversion experiments.
Critical parameters to be determined for frequency-domain waveform inversion surveys
include

· selection of frequencies,

· source and receiver spacings, and

· borehole separations for crosshole surveys.

The spacings of the sensor elements and the borehole separations can usually be freely
chosen for a particular survey in the light of target dimensions and available recording
channels, but the choice of frequencies can be limited by the subsurface conditions
and/or may be constrained by the source and instrument characteristics. It is therefore
particularly important to know upfront the useful portions of the frequency spectrum
before the final decision for conducting an experiment is made or the costs for buy-
ing/leasing specialized equipment are incurred. An approach for selecting frequencies
has been proposed by Sirgue and Pratt (2004) for surface-based surveys and by Yokota
and Matsushima (2003) for crosshole experiments. They devised strategies for selecting
frequencies on the basis of the maximum spatial wavenumbers connected with a partic-
ular survey design. The influence of spatial sampling has been investigated by Brenders
and Pratt (2007), but to the best of our knowledge, no quantitative survey design studies
have been performed that consider source and receiver spacing and borehole separation
in the context of frequency-domain waveform inversions of crosshole data.

In this paper we investigate options for optimizing frequency-domain crosshole seismic
experiments using statistical experimental design. These techniques were introduced to
geophysics by Curtis and Snieder (1997), Maurer and Boerner (1998a), Curtis (1999)
and Maurer et al. (2000), who formulated survey design as an optimization problem using
measures from linear inversion theory. This provided a general framework for analyzing
a wide range of survey types and data acquisition parameters, and is thus also amenable
for our present purposes.

In the first part of the paper, we briefly describe our waveform inversion approach, fol-
lowed by an introduction to the particular objective function used, by which the goodness
of a particular survey design can be quantified. Then, we investigate model dependencies
and the suitability of different representations of frequency-domain data. Subsequently,
we present different strategies for selecting frequencies and source and receiver spacings.
Finally, our findings are tested by means of synthetic data inversions.

Frequency-domain waveform inversions

As with many linearized least-squares inversion schemes, our algorithm includes a forward
solver F that predicts (computes) the complex-valued frequency-domain data dpred for a
particular subsurface model m

dpred = F (m) (F.1)
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and a corresponding inverse operator

mest = F−1
(
dobs − dpred

)
, (F.2)

which estimates the subsurface medium parameters mest from the observed data dobs.
Here, we make several simplifying assumptions to ease the calculations and to gain more
direct insight. For the forward operator, we employ an acoustic approximation to the
elastic wave equation and assume constant density throughout the medium, such that
the model parameter vector m includes only the P-wave velocities. Furthermore, only 2D
wave propagation (line source) is considered. Point source (2.5D or 3D modeling) would
add to the computational effort considerably. Finally, we assume the source functions
to be known. It is, however, important to note that these assumptions are only applied
for the reasons given above, and in no way invalidate the generality of the approach;
the concepts presented in this paper can be readily extended to the 2.5D or 3D elastic
problems or to the visco-elastic case including anisotropy, and to simultaneous inversions
of subsurface parameters and source functions.

Our forward operator F solves the 2D acoustic problem using a simple frequency-
domain structured grid finite-element approximation. For further details see Zhou and
Greenhalgh (1998a). The subsurface is discretized with a regular grid of linear rectangular
elements. Perfectly matched layer boundary conditions are implemented (Heikkola et al.,
2003) and the system matrix is solved using the direct matrix solver PARDISO (Schenk
et al., 2002). This allows efficient computations of the pressure spectral wavefields for
a large number of sources.

As noted by Pratt et al. (1998) and others, a Gauss-Newton approximation of the
inverse operator F−1 allows often faster convergence of the iterative inversion procedure
than the more traditional conjugate-gradient back-propagation approaches. Our Gauss-
Newton type inverse operator F−1 can be written as

mest
i+1 =

(
JT J + C−1

M

)−1
JT
[(

dobs − dpred
)

+ Jmest
i

]
, (F.3)

where J is the Jacobian matrix the elements of which are the sensitivities or Fréchet
derivatives, i is the iteration number (mest

0 is the initial model); and C−1
M is the à priori

model covariance matrix, which allows regularization constraints, such as damping and
smoothing, to be supplied (e.g. Maurer et al., 1998). An L2 norm misfit objective
function is implicit in equation (F.3).

It has been argued (e.g. Tarantola, 2005) that conjugate gradient methods are com-
putationally more efficient than Gauss-Newton algorithms, because they do not require
the Jacobian matrix to be computed explicitly. However, the sensitivities in J can be
computed swiftly using the explicit expressions published by Zhou and Greenhalgh (1999).
Furthermore, the matrix JT J and the vector JT

[(
dobs − dpred

)
+ Jmest

i

]
in equation (F.3)

can be accumulated sequentially (e.g. Sheen et al., 2006), such that the only limiting
factor in terms of computer memory is the number of model parameters in m, which
determines the dimension of JT J. For 3D problems m can be very large, which may
require other inversion schemes to be considered. The inversion runs shown in the last
part of this paper typically converged after 10 to 20 iterations.
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Experimental design

Over the past few decades, major efforts have been made to improve the efficiency of
numerical forward modeling and inversion algorithms for geophysical data. In contrast,
surprisingly few studies on optimized design of geophysical experiments have been pub-
lished (Maurer and Boerner, 1998b). This is unfortunate, since the information content
offered by a geophysical data set is inherently limited by the reliability of the inversion
models.

It is our goal to identify survey layouts with optimized benefit/cost ratios. Costs
are typically associated with the number of source and receiver positions. In seismic
waveform tomography there are additional costs to consider, which may be related to
the frequency bandwidth of the seismic sources and the receiver instrumentation.

Since waveform tomography algorithms are based on linearized inversion theory, we
consider corresponding measures for quantifying the benefits of a particular survey (e.g.
Menke, 1989). The choice of a survey layout governs the structure of the Jacobian matrix
J, and close inspection of equation (F.3) indicates that the reliability of the parameter
estimates mest depends primarily on our ability to invert the matrix

(
JT J + C−1

M

)
. With-

out the regularization constraints in C−1
M , this matrix would likely be singular, such that

its determinant would be zero and its condition number (i.e., ratio of the largest to the
smallest eigenvalues) would be infinite. Since the sensitivities in J represent the informa-
tion content offered by a particular survey design, and C−1

M indicates our preconceived
ideas on the subsurface structure (e.g., closeness to initial model or smooth variation of
the seismic velocities), it is certainly advisable to maximize the contribution of JT J and
to minimize the influence of C−1

M .

Figure F.1 shows two typical eigenvalue spectra of JT J as they may arise from
two frequency-domain waveform tomography crosshole experiments involving different
recording geometries. The vertical axis is logarithmically scaled and normalized with
respect to the largest eigenvalue of the corresponding spectra, and the horizontal axis is
normalized by the total number of eigenvalues (number of model parameters). Due to
the finite precision of numerical computations, eigenvalues are rarely identical to zero,
even when the matrix is singular. Therefore, a threshold has to be introduced below
which the eigenvalues have to be considered to be insignificant (dashed line in Figure
F.1). The intersections of the eigenvalue spectra with the threshold line indicate the
portions of the resolved model space and the unresolved null space. We define the
portion to the left of the intersection points as the Relative Eigenvalue Range (RER),
which provides a simple and intuitive means for quantifying the goodness of a particular
survey design. Although both matrices related to the eigenvalue spectra shown in Figure
F.1 are singular, the RER indicates that survey design 2 is superior to design 1, because
its null space is smaller. Note that the concepts and terminology introduced in Figure
F.1 are the basis for diagrams in many of the other Figures.

The choice of threshold level is problem-dependent, but extensive tests indicated that
this is not a critical parameter for our experimental design approach, since it just scales
the individual RER values. Any threshold choices we make between 10−8 and 10−12 yield
similar results. All the eigenvalue spectra shown in the following Figures are plotted down
to a value of 10−10, such that the RER value can be easily recognized as the intersection
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Figure F.1: Schematic representation of two normalized eigenvalue spectra of the Hessian
matrix JT J (equation (F.3)). The horizontal axis is normalized with respect to the total
number of model parameters and the vertical axis is normalized with respect to the
largest eigenvalues. RER1,2 indicate the measures of goodness employed in this paper.

with the horizontal axis. Here, we consider noise-free data. In the presence of noise it
would be necessary to raise the threshold to an appropriate level.

For the computations of the RER, a subsurface model has to be specified. Ideally,
one would choose the true subsurface model, but this is generally unknown. Therefore,
an educated guess of the subsurface structure may be required at a design stage. This
problem was investigated by Stummer et al. (2004) in the framework of geoelectrical
survey design. They concluded that although sensitivities may vary substantially between
different Earth models, this has a surprisingly small effect on the optimal choice of
electrode configurations. In this study, we will examine whether similar conclusions can
also be drawn for frequency-domain waveform tomography experiments.

The non-linear effects introduced by the model dependency also affect the conver-
gence behavior of waveform inversions. The existence of local minima may preclude
convergence of the algorithms to the global minimum of the data misfit function. This
makes the choice of an appropriate initial model critical (e.g. Plessix and Mulder, 2008).
It has been observed by several researchers (e.g. Brenders and Pratt, 2007) that con-
vergence of the inversion algorithm may improve significantly when initially only low
frequency data are inverted and higher frequencies are added later.

Experimental setup

The simple experimental setup employed in this study involves two 30 m long, parallel
boreholes. Our data space comprises 30 frequencies equally spaced between 100 and
1500 Hz. The band-limited nature of seismic data is approximated with a Ricker wavelet
having a center frequency of 700 Hz. Its amplitude spectrum is shown in Figure F.2.
Furthermore, we consider various source (left borehole) and receiver (right borehole)
spacings of 0.25 m, 0.5 m, 1 m, 2 m and 4 m, and borehole separations of 10 m, 20 m,
30 m, 40 m and 50 m. Such geometries are typical of civil engineering crosshole experi-
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Figure F.2: Amplitude spectrum of a Ricker source wavelet with 700 Hz center frequency.
The dashed vertical lines indicate the lower and upper frequency limits considered.

ments. Oilfield surveys would scale up by a factor of 10 to 20, but the frequencies do
typically not scale down by a similar factor, and the aspect ratio (hole length/hole sepa-
ration) would be rarely smaller than 2. Our investigations indicate that it is worthwhile
making an effort to extend the frequency spectrum as much as possible towards lower
frequencies.

For the solution of the forward problem the model space is discretized with square
cells of 0.15 m side length. Our inversion grid comprises square cells of side length 0.6 m.
The size of the forward cells is dictated by the stability criterion of the finite element
solver, and the size of the inversion cells should represent a good compromise between
the spatial and formal resolution (e.g. Menke, 1989). We have repeated some of the
computations described later in the paper with inversion cell sizes of 0.3 m and 1.2 m
and came essentially to the same results.

Two different velocity distributions are considered – a homogenous model with vP =
2000 m/s and a stochastic model with a mean velocity of vP = 2000 m/s, a standard
deviation of 100 m/s, a correlation length of 8 m, and a fractal dimension of 0.5 (e.g.
Goff and Jordan, 1988). Additionally, we added a positive and a negative square-shaped
velocity anomaly with dimensions 2 × 2 m2 to the stochastic model. Figure F.3 shows
the stochastic model for a borehole separation of 30 m (most computations performed
in this study consider 30 m borehole separation). Note, that the wavelengths (λ) for
the homogeneous model vary from 20 m (100 Hz) to 1.33 m (1500 Hz). Therefore, for
the lowest frequency employed, the borehole separation varies from λ/2 to 2.5λ, and the
source/receiver spacings vary from approximately λ/100 to λ/5.
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Figure F.3: Example stochastic model employed in this study for a borehole separation
of 30 m. Boreholes are indicated by black vertical lines.

Model dependency

Since seismic waveform data and the corresponding model parameters are related to
each other in a non-linear fashion (equations (F.1) and (F.2)), the sensitivities required
for the solution of equation (F.3) are model dependent. This is illustrated in Figure F.4,
which shows sensitivity patterns for a source at 3 m depth, a receiver at 33 m depth, and
a hole separation of 30 m. Panels F.4a to F.4c are based on the homogenous model and
panels F.4d to F.4f are computed using the stochastic model in Figure F.3. Only the real
parts of the complex sensitivities for low (100 Hz, Figure F.4a and F.4d), intermediate
(750 Hz, Figure F.4b and F.4e) and high (1500 Hz, Figure F.4c and F.4f) frequencies
are displayed; the corresponding imaginary parts show comparable features. It is obvious
that the velocity model influences the sensitivity patterns substantially at all frequencies,
and it is particularly noteworthy that the velocity fluctuations distort the symmetries of
the sensitivity patterns in Figure F.4d to F.4f.

Figure F.4g to F.4i show the eigenvalue spectra for the homogeneous (red curves)
and stochastic (blue curves) models based on source and receiver spacings of 1 m. As
expected intuitively, the low frequency 100 Hz data provide only minor information on
both velocity models, i.e. their RER values (intersections with the horizontal axis) are
quite small (¡ 0.1). The 750 Hz (Figure F.4h) and 1500 Hz (Figure F.4i) data show
higher RERs between 0.2 and 0.5. Interestingly, the spectra for the homogeneous and
stochastic models differ significantly for the 750 Hz data, thereby indicating that the
stochastic model is better constrained by the seismic data than the homogenous model.
This observation can be understood by considering seismic wave propagation in media
with different model complexities. In a homogenous medium, there is only a direct
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Figure F.4: Model dependency of sensitivities, eigenvalues and model resolution. Panels
a) to c) show the real parts of the waveform sensitivities for a homogeneous model using
frequencies 100, 750, and 1500 Hz respectively. Sources are placed at 5 m distance and
3 m depth and the receivers are positioned at 35 m distance and 33 m depth. Panels d)
to f) show the corresponding plots for the stochastic model shown in Figure F.3. Panels
g) to i) show the eigenvalue spectra of the Hessian matrix JT J (equation (F.3)) for the
homogeneous (red curves) and the stochastic (blue curves) models using frequencies of
100, 750 and 1500 Hz. Borehole separation is 30 m and source and receiver spacing is
1 m. Panels j) to o) depict the spatial distribution of the diagonal elements of the model
resolution matrices for the simulations associated with the curves shown in g) to i).
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wave traveling through the medium, whereas in a more complicated medium, multiple
scattering at the heterogeneities occur. This causes the individual parts of the model
to be “illuminated” from many different directions, increasing the wavenumber coverage
and thus enhancing the model resolution. At the high frequency end (1500 Hz) the RERs
of the homogeneous and stochastic model are again comparable. Apparently, multiple
scattering of a single high-frequency spectral component is not beneficial in terms of
model resolution because the imaging wavelength is now similar to the wavelength of
model variations. In contrast, we will demonstrate that combinations of high and low
frequencies result in a significant improvement of the stochastic model compared with
the homogeneous case.

The model resolution can be formally expressed by the model resolution matrix R,
defined as

R =
(
JT J + C−1

M

)−1
JT J (F.4)

(e.g. Menke, 1989). It relates the estimated model parameters mest with the true model
parameters mtrue (mest ≈ Rmtrue). Of particular interest are the diagonal elements of R.
Values close to zero indicate poorly resolved model parameters, and values close to one
indicate well resolved model parameters.

Figure F.4j to F.4o show the spatial distributions of the diagonal elements of R for
the different models and frequencies. With only one low frequency, acceptable model
resolution is restricted to the areas near the boreholes, whereas better resolution is
observed at higher frequencies over larger parts of the model space. Again, there are
substantial differences between the homogenous and the stochastic models. Figure F.4m
to F.4o also demonstrate the relationship between the seismic velocities and the model
resolution. Generally, there is increased resolution in areas of decreased velocities. This
can be explained by the shorter wavelengths that result in these regions.

Two main conclusions can be drawn from the results in Figure F.4. First, there
are significant differences in the sensitivities, eigenvalue spectra and model resolution for
different types of velocity model. Second, heterogeneous models may be generally better
constrained by seismic waveform data, because of the occurrence of multiple scattering
at heterogeneities. In the following, all analyses are performed for both velocity models
in order to explore whether different experimental design strategies have to be chosen
for different types of velocity model.

Data representation

Frequency-domain seismic data are generally complex-valued quantities, but it has been
proposed to use only the amplitude spectrum, only the phase spectrum or only the
Hartley spectrum. The latter is defined as the difference between the real and imaginary
parts of the spectrum (e.g. Bracewell, 1984). The advantage of such real valued data
representations is that they reduce the size of the Jacobian matrix by a factor of two.
Zhou and Greenhalgh (1998b) showed that inversion of the Hartley spectrum could lead
to similar results as provided by the full complex spectrum. It has been also shown
that (normalized) amplitude inversions can be formulated such that the influence of the
source wavelet is removed (Zhou and Greenhalgh, 2003; Xu et al., 2006). In contrast,
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Bleibinhaus et al. (2007) inverted only phase data to avoid artifacts caused by anelastic
effects.

By means of an eigenvalue spectrum analysis, we have inspected the information
content of the different data representations. Figure F.5 shows normalized eigenvalue
spectra for 100 Hz (Figs F.5a and F.5d), 750 Hz (Figs. F.5b and F.5e) and 1500 Hz
(Figs. F.5c and F.5f) data using the homogeneous and the stochastic models, and a
source/receiver spacing of 1 m. At low frequencies (Figs F.5a and F.5d), the different
spectra are very similar, but at higher frequencies the individual curves diverge. In par-
ticular, the 1500 Hz data demonstrate clearly that the full complex frequency spectral
data lead to a much better constrained inversion problem than all other data represen-
tations. Results for the Hartley spectra, only real parts and only imaginary parts are
virtually identical in all panels of Figure F.5. The Hartley spectrum seems to be slightly
superior to the Amplitude data, and phase data are somewhat inferior to the other data
representations. This latter observation changes, if the eigenvalue threshold rises up to
0.1, which may be required in the presence of a very high noise level. In such a situation,
the phase data are superior to any other data representation. This may imply that when
the data are too noisy to rely on scattered wave observations, first break travel time
tomography should be applied.

From our analysis it can be concluded that, whenever possible, the full complex

Figure F.5: Effects of different data representations. Eigenvalue spectra of the Hessian
matrix JT J (equation (F.3)) for frequencies 100, 750, and 1500 Hz and the homogeneous
and the stochastic model. Borehole separation is 30 m, and source and receiver spacings
are 1 m.
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spectrum should be considered. The larger size of the Jacobian matrix is not critical,
because the normal equations (F.1) can be accumulated sequentially. All subsequent
computations described in this contribution are based on the full complex spectrum.

Selection of frequencies

We consider three different types of data sets: (i) single frequencies, (ii) cumulative
frequencies and (iii) optimized frequencies. The single frequency data sets only include a
single frequency at a time. For the cumulative frequencies (e.g., Figure F.6c and F.6d),
the lowest frequency (100 Hz) forms the first data set. The second data set includes
the lowest and next higher frequency data. For the following data sets, higher frequency
data are successively added, and the last data set includes all frequencies.

Optimized data sets also start with the lowest frequency. The next frequency is
selected such that it complements the preceding data set in an optimal fashion. This is
achieved by adding (one at a time) all other frequency data sets to the Jacobian matrix
and testing to see, which frequency provides the highest RER value for the resulting
Hessian matrix. This frequency is then chosen.

Choosing the lowest frequency for initializing the optimization process is governed
by the results of Brenders and Pratt (2007) and others, who demonstrated that low fre-
quency data are essential to avoid local minima during the iterative inversion procedure.
In fact, an inversion with only the lowest frequency was sufficient for determining an
appropriate initial model.

Eigenvalue spectra are computed for single, cumulative and optimized frequency
data sets and all combinations of source and receiver spacings, borehole separations and
velocity models. A selection of results is displayed in Figures F.6 to F.8. They show
the results for a borehole spacing of 30 m and shot/receiver spacings of 1, 2 and 4 m
respectively. The left panels (a, c, e, g, i) in each figure display the results for the
homogeneous model and the right panels (b, d, f, h, and j) depict the curves for the
stochastic model.

Results for the single frequency data are shown in panels a and b of Figures F.6 to F.8.
The lowest frequency data provide the lowest RER values. With increasing frequencies
the RER values increase. As expected, the RERs decrease with increasing source and
receiver spacings. Likewise, the RERs decrease with increasing borehole separations (not
shown).

Similar observations can be made for the cumulative frequencies in panels c and d
of Figures F.6 to F.8, but there are some important differences. Compared to the single
frequency data, the RER values for the cumulative frequencies are generally much higher.
For the stochastic model and the largest source and receiver spacings (Figure F.8), the
differences between the single and cumulative frequencies are substantial. The highest
frequency leads to a RER of less than 0.05 (Figure F.8b) and the data set including all
the frequencies (Figure F.8d) shows a RER of almost 0.9, such that the null space is
very small. Again, the stochastic model is generally much better constrained than the
homogeneous model. As for the single frequencies, the RER values for the cumulative
frequency data sets generally decrease with increasing source and receiver spacings and
with decreasing borehole separations (not shown).
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Figure F.6: Selection of frequencies for a borehole separation of 30 m and source and
receiver spacings of 1 m. Left panels show the results for the homogeneous model, and
right panels show the results for the stochastic model. a) and b) show the eigenvalue
spectra for single frequencies. The lowest frequency (100 Hz) results in the lowest RER
(intersection with the horizontal axis), and the highest frequency provides the largest
RER (intersection with horizontal axis). c) and d) include the results for the cumulative
frequency distributions, and e) and f) depict the eigenvalues for the optimized frequency
selection scheme. In panels g) and h) the sequences of selected frequencies are shown
for the optimized selection scheme (panels e) and f)). Panels i) and j) sketch the
development of the RER for single (red curves), cumulative (blue curves) and optimized
(black curves) selection schemes. The dashed vertical lines in panels g) to j) indicate
the number of selected frequencies, where the RERs for the optimized scheme exceed
95% of the maximum level achievable (plateau of the black curves in i) and j)).
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Figure F.7: Selection of frequencies for a borehole separation of 30 m and source and
receiver spacings of 2 m. Left panels show the results for the homogeneous model, and
right panels show the results for the stochastic model. a) and b) show the eigenvalue
spectra for single frequencies. The lowest frequency (100 Hz) results in the lowest RER
(intersection with the horizontal axis), and the highest frequency provides the largest
RER (intersection with horizontal axis). c) and d) include the results for the cumulative
frequency distributions, and e) and f) depict the eigenvalues for the optimized frequency
selection scheme. In panels g) and h) the sequences of selected frequencies are shown
for the optimized selection scheme (panels e) and f)). Panels i) and j) sketch the
development of the RER for single (red curves), cumulative (blue curves) and optimized
(black curves) selection schemes. The dashed vertical lines in panels g) to j) indicate
the number of selected frequencies, where the RERs for the optimized scheme exceed
95% of the maximum level achievable (plateau of the black curves in i) and j)).
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Figure F.8: Selection of frequencies for a borehole separation of 30 m and source and
receiver spacings of 4 m. Left panels show the results for the homogeneous model, and
right panels show the results for the stochastic model. a) and b) show the eigenvalue
spectra for single frequencies. The lowest frequency (100 Hz) results in the lowest RER
(intersection with the horizontal axis), and the highest frequency provides the largest
RER (intersection with horizontal axis). c) and d) include the results for the cumulative
frequency distributions, and e) and f) depict the eigenvalues for the optimized frequency
selection scheme. In panels g) and h) the sequences of selected frequencies are shown
for the optimized selection scheme (panels e) and f)). Panels i) and j) sketch the
development of the RER for single (red curves), cumulative (blue curves) and optimized
(black curves) selection schemes. The dashed vertical lines in panels g) to j) indicate
the number of selected frequencies, where the RERs for the optimized scheme exceed
95% of the maximum level achievable (plateau of the black curves in i) and j)).
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Eigenvalue spectra for the optimized data sets are depicted in panels e and f in
Figures F.6 to F.8. For source and receiver spacings of 1 m (Figure F.6) a large increase
in the value of RER is achieved by adding only one additional frequency, and with 3
frequencies the RER is already very close to its maximum value. Figure F.6g and F.6h
indicate the sequence in which the frequencies are selected. For both the homogeneous
and the stochastic model, the second frequency selected is 1500 Hz, which is the highest
possible frequency. The next few frequencies are also quite high, but it is noteworthy
that the third and fourth choices are not the highest frequencies possible. Again, this
applies to the selection procedures for both velocity models.

Figures F.6i and F.6j display the development of the RER for the single, cumulative
and optimized selection schemes. The curves for the optimized selection scheme exhibit
a sharp kink after the 3rd frequency selected and then plateau. This indicates that the
remaining frequencies added to the data sets contribute virtually no additional informa-
tion. Consequently, the sequence of the remaining frequencies is insignificant. To help
compare Figures F.6 to F.8, a dashed vertical reference line is added to the panels g to
j, which indicates the number of frequencies needed for the RER to exceed 95% of its
maximum value for the optimized selection scheme.

The RER developments of the single and cumulative selection schemes (red and blue
curves in Figures F.6i and F.6j) are more gradual. They require all the frequencies for
the homogenous model and 16 frequencies for the stochastic model in order to reach
95% of the maximum RER. As already indicated in Figures F.6a and F.6b, the single
frequencies never achieve the maximum RER for multiple frequency data sets.

Results for source and receiver spacings of 2 and 4 m (Figures F.7 and F.8) indicate
that maximum RERs similar to those of the 1 m spacing can be achieved. However,
as illustrated in Figures F.7g, F.7h, F.8g and F.8h, more frequencies are required to
attain the maximum RER. An interesting observation is made in Figure F.8j. Here, the
RER curves for the cumulative and optimized data sets nearly coincide. The selection
sequence, shown in Figure F.8h is almost the opposite to that of the cumulative selection
strategy. This could indicate that it does not really matter which frequencies are selected
when the data sets are excessively sparse, although selection of the first frequency to be
low is still important. Similar observations are also made for larger borehole separations
(not shown).

Figure F.9 summarizes the key results of this section. Panels F.9a and F.9b show
the maximum RER achievable as a function of the source and receiver spacings and the
borehole separation (corresponds to the plateau level of the black lines in panels i and j
of Figures F.6 to F.8). For the homogenous model, it is only possible to obtain an RER
close to 1.0, when the borehole separation is small. In contrast, for the stochastic model,
almost all combinations of spacings and hole separations result in an RER close to 1.0,
when a sufficiently high number of frequencies are used. The vertical stripe pattern in
Figure F.9a also illustrates that the goodness of an experimental layout is predominantly
governed by the borehole separation and not by the source and receiver spacings.

In Figures F.9c and F.9d, the development of the RER is imaged as a function of
the source and receiver spacings and the number of (optimized) frequencies considered
(for a fixed borehole separation of 30 m). This result clearly demonstrates that the most
useful information content offered by the seismic data can be obtained with surprisingly
few frequencies. For spacings of 0.25, 0.5, 1.0 and 2.0 m only 2, 2, 3 and 9 frequencies
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Figure F.9: Summary plots for the optimized frequency selection schemes. Panels a)
and b show the maximum RER level achievable for the homogeneous and the stochastic
model as a function of borehole separation and source and receiver spacings. c) and d)
show the development of the RER as a function of the number of frequencies and the
source and receiver spacings. Borehole separation for c) and d) is 30 m.

are required, respectively, to reach 95% of the maximum RER achievable. For the largest
spacing of 4 m, the complete suite of frequencies is insufficient to achieve such a high
RER.

Inversion results

With the eigenvalue analyses given in the previous sections it was possible to identify the
theoretical information content offered by the seismic data. However, due to the non-
linearity of the waveform inversion problem, it is necessary to check if this information
can actually be exploited in practice, or, if the iterative inversion process gets trapped
in local minima. This not only depends on the information content of the data set, but
also relies on (i) the inversion algorithm chosen (conjugate gradient, Gauss-Newton, full
Newton, etc.), (ii) the complexity of the true model, (iii) the regularization constraints
applied, (iv) the level of data noise contamination and, most importantly, (v) the choice
of the initial model.

It is beyond the scope of this paper to explore all the above issues in detail (see Bren-
ders and Pratt, 2007, and references therein for a more extensive discussion). Instead,
we choose a robust approach that requires neither an educated guess of the initial model
nor involves a sophisticated regularization operator. As an initial model we choose a
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homogenous medium with average velocity equal to that of the true model (2000 m/s).
Regularization constraints are supplied in the form of an equal amount of damping and
smoothing (Maurer et al., 1998). Initially, we only invert the lowest frequency (100 Hz)
for obtaining the long wavelength variations of the model. This initial inversion result
is then employed as a starting model for a second inversion run, where all the selected
frequencies are inverted simultaneously.

Computing time is dominated by the solution of the forward problem and the as-
sociated sensitivities. Predicting the data and computing the sensitivities for a single
frequency required roughly 2 minutes on a standard workstation, such that a full inver-
sion run with, for example, 5 frequencies and 10 iterations could be completed in about
100 minutes.

Key results of this study are illustrated in Figures F.9b and F.9c, which demonstrate
that only a very limited number of frequencies are required for fully exploiting the in-
formation content offered by the seismic data. To test this conjecture, synthetic data
are generated for the stochastic model of Figure F.3 and a borehole separation of 30 m.
Figure F.10a shows again the true model, but resampled down to the inversion block size
(0.6 m). The best inversion results are obviously expected for a “comprehensive” data
set involving the densest source and receiver spacings (0.25 m) and all 30 frequencies
(∼ 900000 data points). The corresponding tomogram is shown in Figure F.10b. It
recovers all the important features reliably.

Figures F.10c to F.10e show the inversion results for a spacing of 0.5 m and two fre-
quencies (roughly 15000 data points), a spacing of 1.0 m and three frequencies (∼ 5000
data points), and a spacing of 2 m and 9 frequencies (∼ 5000 data points). For the
0.5 m spacing, the lowest (100 Hz) and the highest (1500 Hz) frequencies were selected.
The other frequency selections are shown in Figures F.6h and F.7h (using the frequen-
cies identified for the homogeneous model (Figures F.6g and F.7g) would lead to very
similar results). According to Figure F.9d, these data sets should provide tomograms
of comparable quality to those in Figure F.10b. This is indeed the case, although the
“comprehensive” tomogram is slightly superior to the other inversion results. In partic-
ular, the high velocity zone at the bottom part of the model is better imaged. The high
and low velocity anomalous blocks are similarly well resolved in all tomograms, and also
the reconstructions of the other stochastic features are of comparable quality.

Discussion

Our investigations have revealed several important features of frequency-domain full
waveform crosshole seismic tomography. In the following, an attempt is made to gener-
alize the results obtained with our specific choices of data and model spaces, such that
recommendations for a wider range of problems can be made.

Results displayed in Figure F.4 indicate clearly the non-linearity (model dependency)
of seismic waveform inversions. It is found that the resolution capabilities of seismic
waveform data sets increase with the degree of heterogeneity. The homogeneous and
stochastic models considered in this study represent the end members in terms of model
complexity. It is expected that resolution capabilities for a wide range of models are
bracketed by the results presented here.
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Figure F.10: Tomographic inversion results using a borehole separation of 30 m. a) The
true model (Figure F.3) resampled with the size of the inversion blocks (0.6 m). b) The
inversion result for a source and receiver spacing of 0.25 m and all 30 frequencies (“com-
prehensiv” data set). c) to e) Tomograms for a spacing of 0.5 m and two frequencies,
1 m and three frequencies, and 2 m and 9 frequencies respectively.
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Benefits of multiple frequency inversions have been demonstrated in a variety of
papers (e.g. Plessix and Mulder, 2008). With our eigenvalue analysis, we have established
a simple means for identifying optimized selections of frequencies. It was found that a
few (optimal) frequencies suffice for obtaining results that are comparable to those using
comprehensive data sets that include all frequencies and employ a dense sampling along
the boreholes. Panels g and h in Figures F.6 to F.8 show the optimal sequences for
particular geometries and velocity models. From a comparison of all sequences (also
including those for source and receiver spacings and borehole separations not shown
in the paper), a general rule of thumb can be derived. At least one low frequency is
required for obtaining a reliable initial model, and to ensure a certain bandwidth, one
high frequency is needed. Additional frequencies should then be chosen from the upper
end of the spectrum. Another important conclusion from our simulations is that this
rule of thumb applies to both the homogeneous model and the stochastic model, such
that the frequency selection procedure does not seem to be model-dependent.

To some extent, this is a surprising result, because most of the frequencies selected
lie in the low-amplitude range of the employed Ricker wavelet spectrum (Figure F.2).
Intuitively, one would expect that the high amplitude data around the center frequency
should be selected, which is apparently not the case. In reality, one would not ignore
the mid-frequency range, where the signal-to-noise-ratio is usually best. In fact, our
recommendation to practitioners is to incorporate such information, but also to utilize
the relatively high frequency data, even when their relative amplitudes may be low. The
signal-to-noise bandwidth will change from one situation to another and this imposes
practical limits on the imaging frequencies. Noise suppression techniques can be helpful
in extending this bandwidth, but one must accept the available frequencies offered by
nature (attenuation) and the source/receiver characteristics. The critical point is to
utilize the relatively high frequency end of the available spectrum. This is much more
beneficial than selecting many frequencies around the center frequency.

The summary plots in Figure F.9 show that there exist trade-offs between the se-
lection of frequencies and the spatial sampling along boreholes. Sparse spatial sampling
can be, to some extent, compensated by considering additional frequencies. However, if
the spatial sampling is sufficiently small, the trade-off disappears. That is, there are only
small imaging benefits to be obtained by using an overly dense spatial sampling (smaller
than the minimum wavelength) along the boreholes. Dense spatial sampling results in a
large number of traces to be analyzed during the inversion. Thus the computational cost
is vastly reduced by working with a significantly reduced amount of data without sacri-
ficing image quality. Of course, there are other benefits to be gained from using dense
arrays to combat noise, but that lies outside the scope of this paper. The conclusions
from our noise-free experiments are nevertheless valid to some extent in the presence of
noise, provided that the frequency selection is within the band where the signal lies suffi-
ciently above the noise floor. One effect of white noise (and other frequency-dependent
factors like absorption) is to simply narrow the available spectrum (Figure F.2). System-
atic noise, such as tube waves, will undoubtedly distort the inversion results. Therefore,
careful pre-processing of the data is required prior to the inversion.
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Conclusions

We have undertaken an analysis of frequency-domain crosswell acoustic waveform inver-
sion using both homogeneous and stochastic models incorporating embedded targets,
with a view to optimal selection of frequencies and source/receiver spacings along the
boreholes. The information content of the data for each candidate recording configura-
tion and suite of frequencies (single, cumulative, etc) was determined by examining the
eigenvalue spectrum of the Hessian matrix. The relative eigenvalue range was found to
be a key determinant of imaging capability.

Comparisons of different types of data representations demonstrate that, whenever
possible, the full complex Fourier spectrum should be used. At lower frequencies pure
amplitude or pure phase data alone yield comparable results to the full complex spectral
data, but at higher frequencies there is a substantial loss of information content for these
restricted data representations. This conclusion does not seem to be model-dependent.

We found, rather surprisingly, that only a few carefully chosen frequencies are suf-
ficient to extract from the seismic data the same amount of subsurface information
as with a more extensive suite of equally spaced frequencies. The optimized data set
should include at least one very low frequency component and the remaining frequencies
should be chosen from the upper end of the available spectrum. Source and receiver
spacings are of less importance than frequency selection, in the sense that much denser
spatial sampling leads to only minor improvement, with the proviso that the increment
is smaller than the minimum wavelength in the model. Borehole separation should also
not be much larger than the depth, otherwise even with many frequencies and small
source/receiver spacings image quality is seriously degraded.

Future research should address a number or complications that were not yet consid-
ered in this contribution. In particular, it needs to be investigated, how source radiation
patterns, receiver coupling, elastic and viscoelastic effects and anisotropy affect experi-
mental design of waveform inversion projects.
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Schenk, O. and Gärtner, K. (2004). Solving unsymmetric sparse systems of linear equa-
tions with pardiso. Future Generation Computer Systems, 20(3):475 – 487. Selected
numerical algorithms.
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